HIERARCHICAL CORRELATION RECONSTRUCTION for time series, conditional distribution (Bayes) models ... (nonlinear, adaptive, all-directional) artificial neurons How to model/estimate density from a data same **MSE fit polynomial** $\rho(x) = \sum_{f \in B} a_f f(x)$ (in (*f*) orthonormal basis) also for joint distribution, non-stationarity, missing data

		Moments/cumulants	$\rho(x) = \sum_f a_f f(x)$	Machine learning					
	# parameters	<mark>low – rough</mark>	from low to <mark>high</mark>	high - accurate					
	estimation	e.g. $m_k = \frac{1}{ X } \sum_{x \in X} x^k$	$a_f = \frac{1}{ X } \sum_{x \in X} f(x)$	usually iteration					
	Interpretable?	yes	Yes: mixed moments	depends					
	Independently?	yes	Yes (adapt, missing)	depends					
	Unique?	yes	yes (MSE)	often huge freedom					
	Accuracy?	controllable	controllable	usually uncontrollable					
	Density?	<u>moment problem</u>	YES: $\sum_f a_f f(x)$	depends					
	\rightarrow complete	yes	depends						
each variable independent ~ correlation coef. <u>Jarek Duda</u> , UJ (<u>intro</u> , <u>tal</u>									
to ∼u	air-wise _≈ nt density	+ a11 · + a	12 · + a21	+ a22 ·					

Articles using **hierarchical correlation reconstruction**:

introduction with Mathematica code

[1] J. Duda, Rapid parametric **density estimation**, <u>arXiv:1702.02144</u> (2017)

[2] J. Duda, **Hierarchical correlation reconstruction** with missing data, for example for **biology-inspired neuron**, <u>arXiv:1804.06218</u> (2018)

[3] J. Duda, **Exploiting statistical dependencies of time series** with hierarchical correlation reconstruction, <u>arXiv:1807.04119</u> (2018)

[4] J. Duda, M. Snarska, Modeling joint probability distribution of yield curve parameters, <u>arXiv:1807.11743</u> (2018)

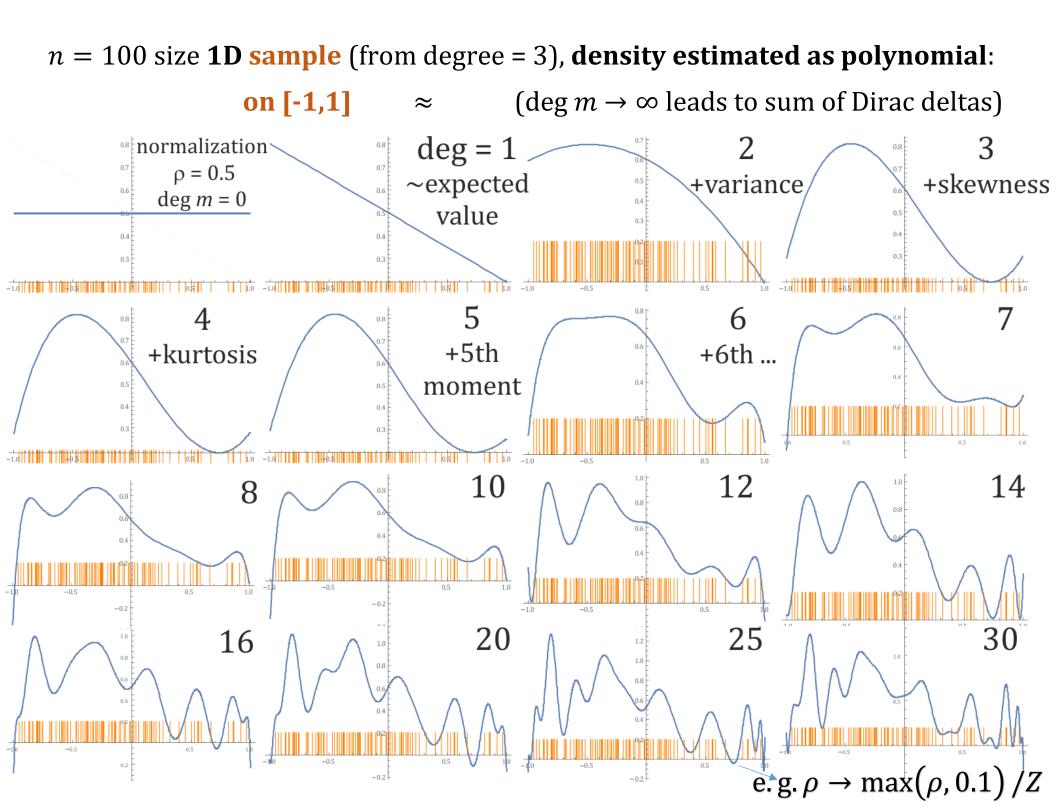
[5] J. Duda, A. Szulc, **Credibility evaluation** of income data with hierarchical correlation reconstruction, <u>arXiv:1812.08040</u> (2018), <u>International Conference on Applied Economics</u> (2020)

[6] J. Duda, R. Syrek, H. Gurgul, Modelling **bid-ask spread conditional distributions** using hierarchical correlation reconstruction, <u>arXiv:1911.02361</u>(2019), <u>Statistics in Transition vol 21 no 4</u> (2020)

[7] J. Duda, G. Bhatta, Log-stable probability density functions, **non-stationarity evaluation**, and **multi-feature autocorrelation analysis** of the γ-ray light curves of blazars, <u>arXiv:2005.14040</u> (2020), <u>Monthly Notices of the</u> <u>Royal Astronomical Society Main Journal</u> (2021)

[8] J. Duda, H Gurgul, R. Syrek, Multi-feature evaluation of **financial contagion**, <u>Central European Journal of</u> <u>Operations Research</u> (2021)

[9] J. Duda, Predicting **conditional probability distributions** of redshifts of Active Galactic Nuclei using Hierarchical Correlation Reconstruction, <u>arXiv:2206.06194</u> (2022), <u>Monthly Notices of the Royal Astronomical</u> <u>Society Main Journal</u> (2024)

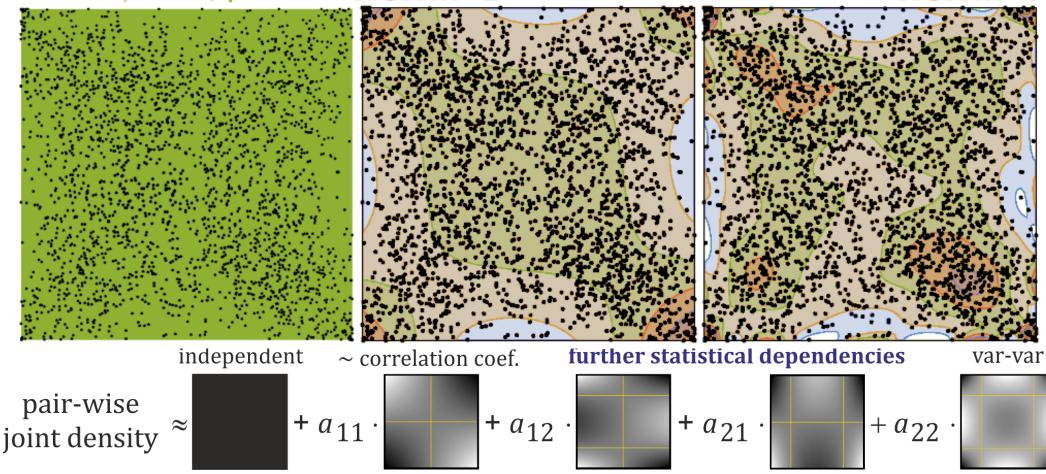

[10] J. Duda, S. Podlewska, Low cost **prediction of probability distributions** of molecular properties for early virtual screening, <u>arXiv:2207.11174</u>, <u>Molecular Diversity</u> (2022)

[11] J. Duda, **Time delay multi-feature correlation analysis** to extract subtle dependencies from EEG signals, <u>arXiv:2305.09478</u> (2023)

[12] J. Duda, **Extracting individual variable information** for their decoupling, direct mutual information and multi-feature Granger causality, *arXiv:2311.13431* (2023)

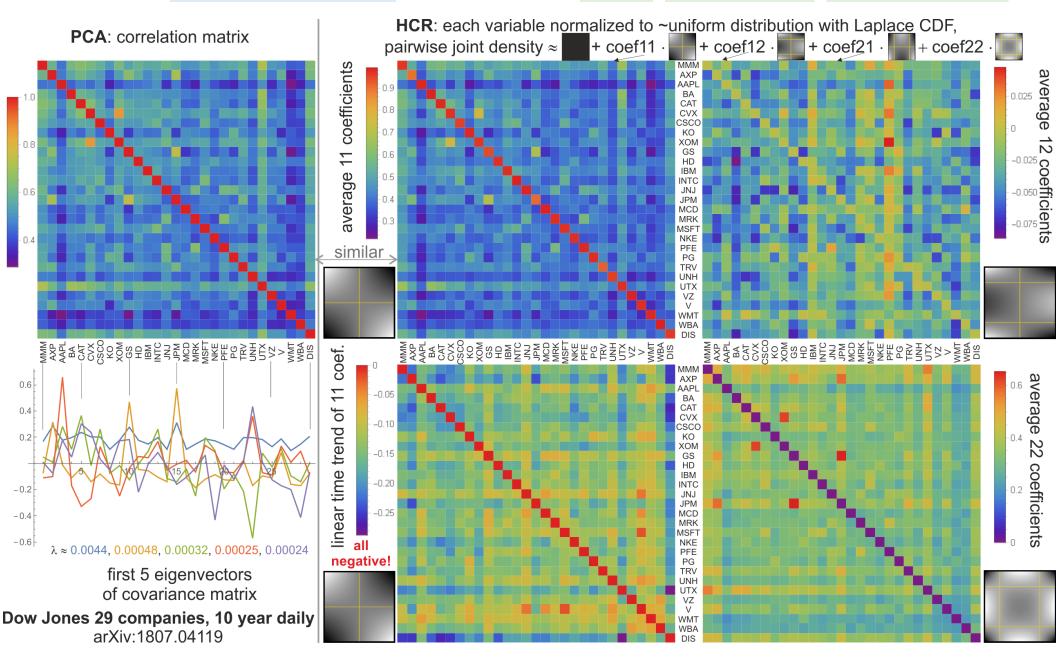
[13] J. Duda, J. Leśkow, P. Pawlik, W. Cioch, CMAFI — Copula-based Multifeature Autocorrelation Fault **Identification of rolling bearing**, <u>Mechanical Systems and Signal Processing</u> (2024)

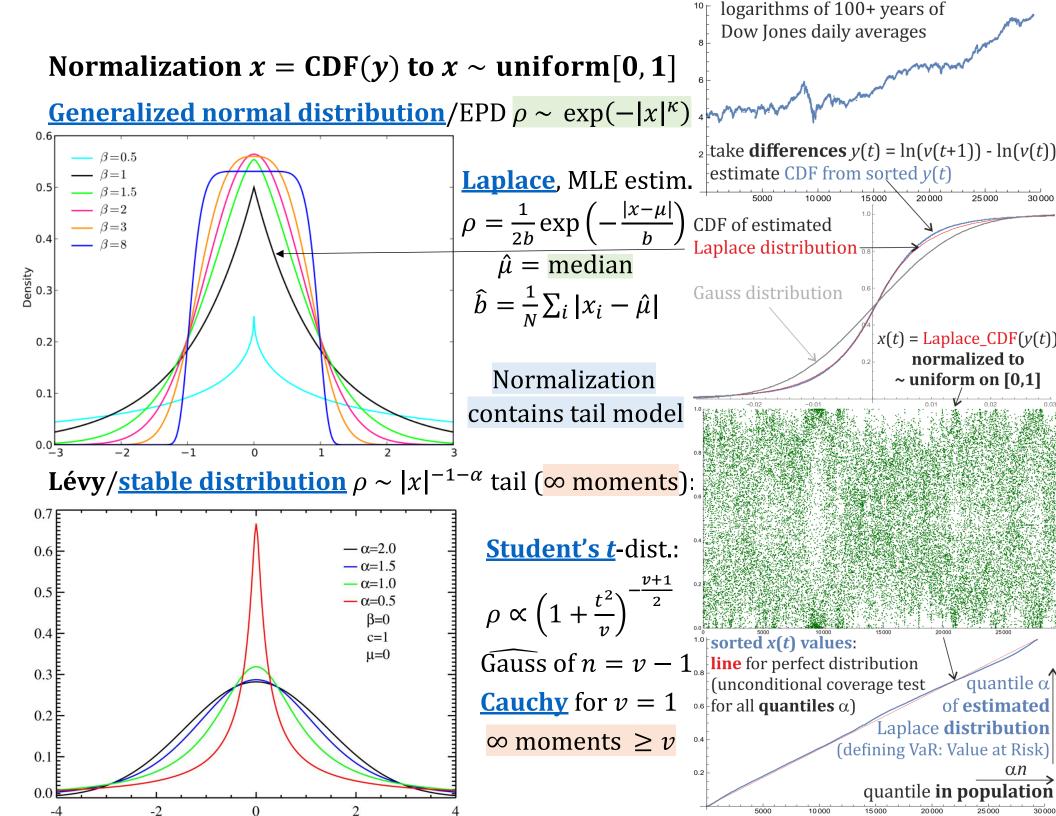
[14] J. Duda, Biology-inspired **joint distribution neurons** based on Hierarchical Correlation Reconstruction allowing for **multidirectional neural networks**, <u>*arXiv:2405.05097*</u>


Derivation:
$$n = 25$$
 size sample
KDE (kernel density estimation):
 $g_{\epsilon} : \epsilon$ -width Gaussian in each point
Find $\rho_{a}(x) = \sum_{j} a_{j}f_{j}(x)$ minim. MSE
 $\arg \min_{a} \int (\rho_{a} - g_{\epsilon})^{2} dx =$
 $\arg \min_{a} \|\rho_{a}\|^{2} - 2\langle \rho_{a}, g_{\epsilon} \rangle + \|g_{\epsilon}\|^{2}$
Taking $\epsilon \to 0$, $\langle \rho_{a}, g_{\epsilon} \rangle = \sum_{x \in X} \rho_{a}(x)$ which does not affect parameters a
Using orthonormal: $\langle f_{i}, f_{j} \rangle = \int f_{i}(x)f_{j}(x)dx = \delta_{ij}$ e.g. on $[0,1]^{d}$
 $\arg \min_{a} \|\rho_{a}\|^{2} - \frac{2}{n} \sum_{x \in X} \rho_{a}(x) = \arg \min_{a} \sum_{j} (a_{j})^{2} - \frac{2}{n} \sum_{x \in X} \sum_{j \in B} a_{j} f_{j}(x)$
minimum: $\partial_{a_{j}} = 0 \Rightarrow a_{j} = \frac{1}{n} \sum_{x \in X} f_{j}(x)$

In practice: normalize each variable to ~ uniform distribution: $x^t = CDF(y^t)$

(1/2: median, position: quantile, like <u>copula</u>) Then fit polynomial as joint distribution (daily log returns: $ln(v_{t+1}/v_t)$)


PDF p uniform


 (x^{t-1},x^t) pairs from TRV series + used estimated density ρ isolines MLE κ , m=0, $\rho=1$ HCR m=2 0, 0.5, 1, 1.5, 2, 2.5 HCR m=9

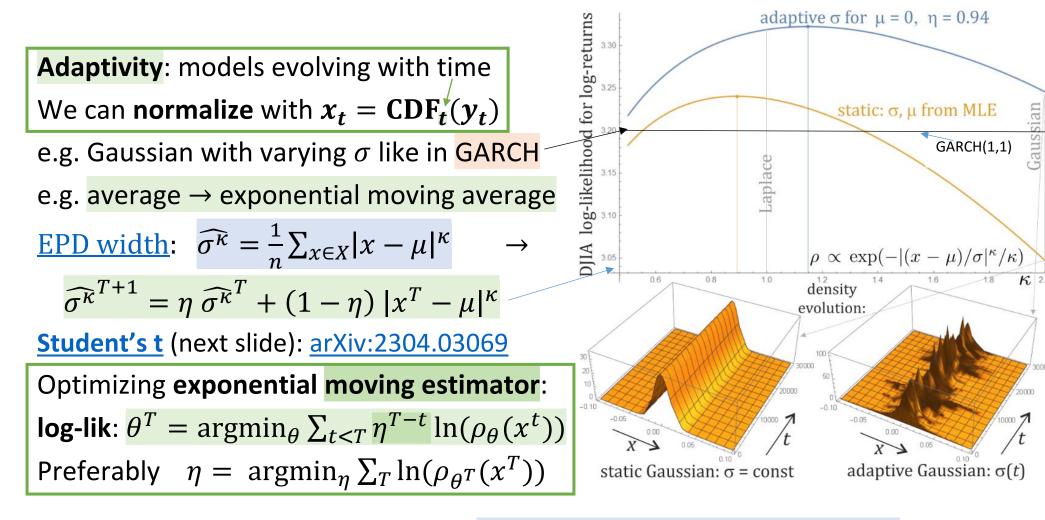
Basic application: many mixed-moment features e.g. for time series classification

Standard: pairwise correlation "11", here: also higher, "triple+"wise, time dependent

MLE optimal E.g. for **ARMA/ARCH** enhancement 0.90 Gaussian-based, often terrible LL $\frac{|y-\mu|^{\kappa}}{\kappa\sigma^{\kappa}}$ $\rho(y) \propto \exp((8\sigma: 1/3 \cdot 10^{12} \text{ yrs ... S&P 500: 1/10 yrs})$ 0.75 (daily log returns for 29 **Dow Jones**) MLE gives much lower power $\kappa \ll 2$: Having approximate parametric dist. we can normalize as in <u>copula theory</u> ave to $x \sim$ uniform on [0,1] distribution: 4.0 $x^t = \text{CDF}_{\text{parametric}}(y^t)$ log-likelihood **HCR**: Fit degree *m* polynomial 3.5 e.g. to (x^{t-1}, x^t) joint distribution can be evolving for nonstationary 5 10 15 (x^{t-1}, x^t) pairs from TRV series + used estimated density ρ isolines polynomial p density calibration \rightarrow 0, 0.5, 1, 1.5, 2, 2.5 * MLE κ , m=0, $\rho=1$ apply $\rho \rightarrow \phi(\rho)$ inverse HCR m=2expected value m' = 1 $\int_0^1 \varphi(\rho(x)) dx$ CDF lensity *m*' = 2 **base**: $1 \rightarrow$ Laplace +variance

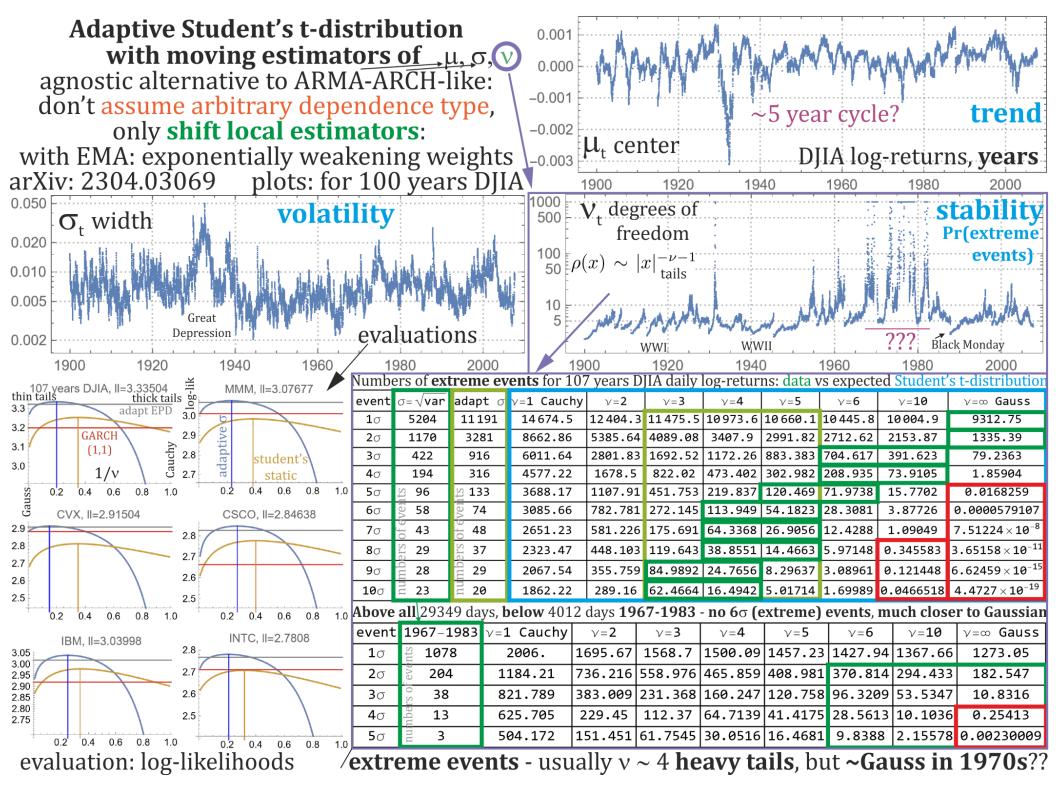
1.00

HCR m

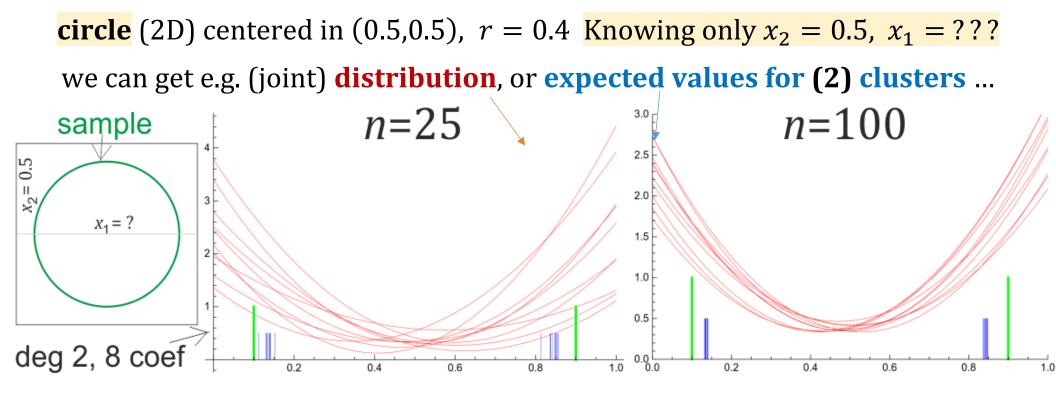

HCR m MLE opt. ĸ

20

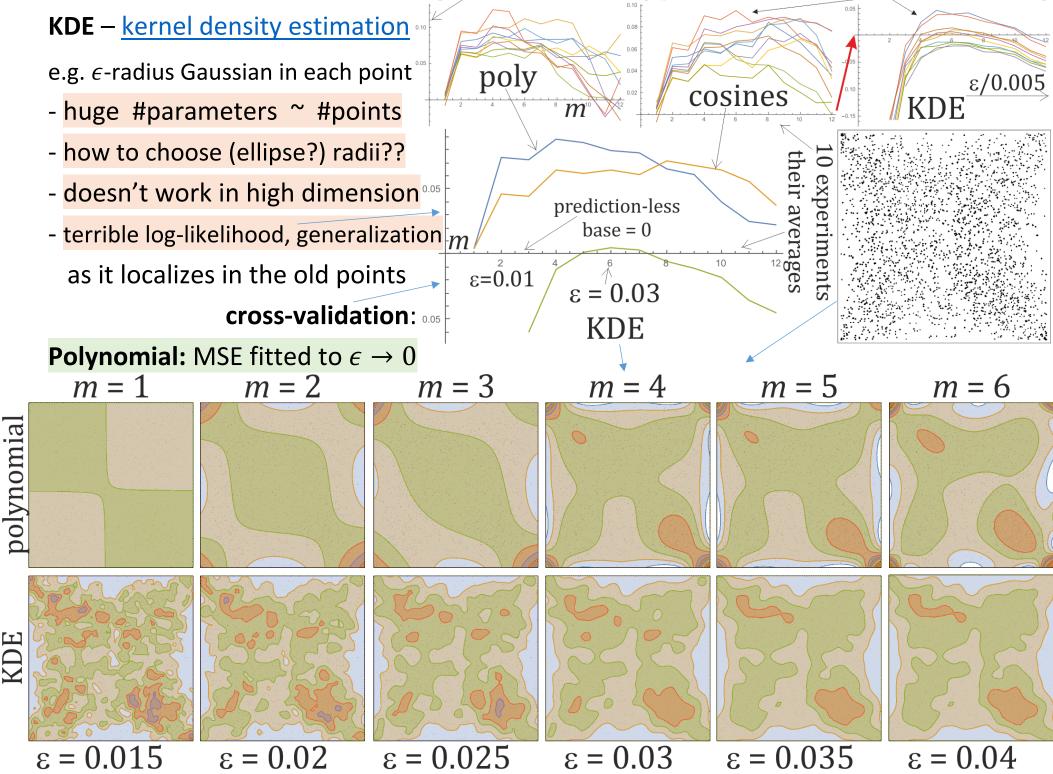
Laplace ĸ=1 ARCH(0.1)

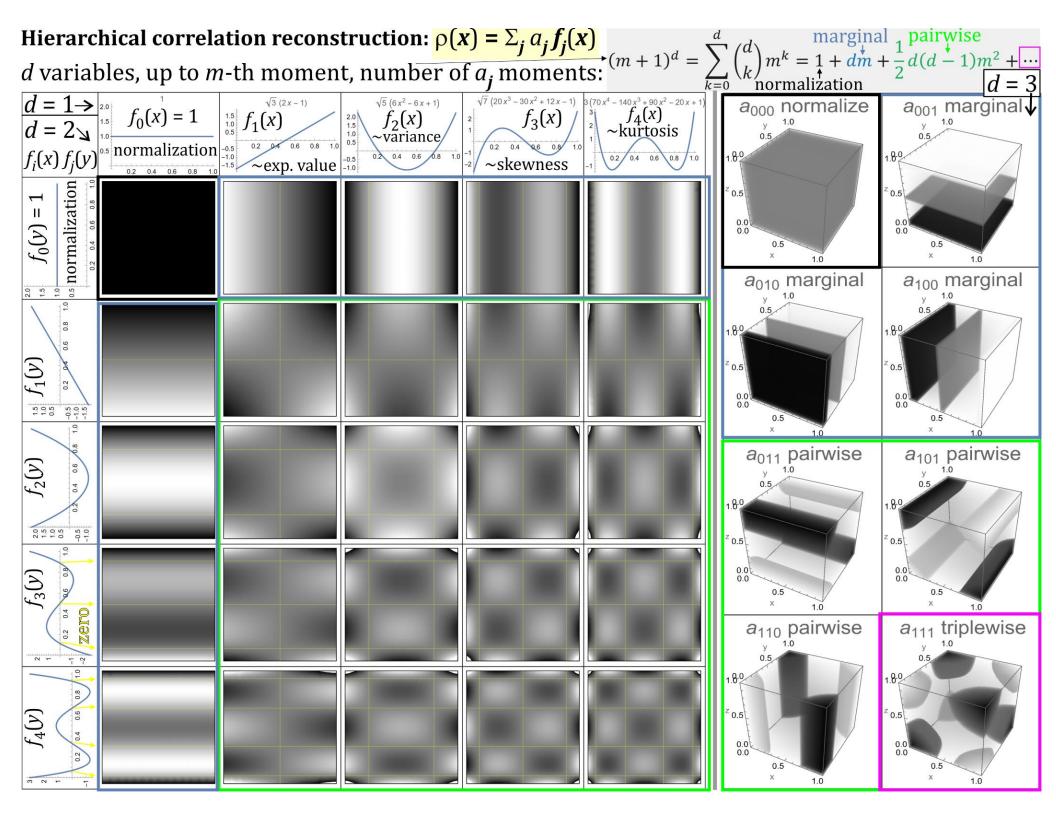

Gauss ĸ=2

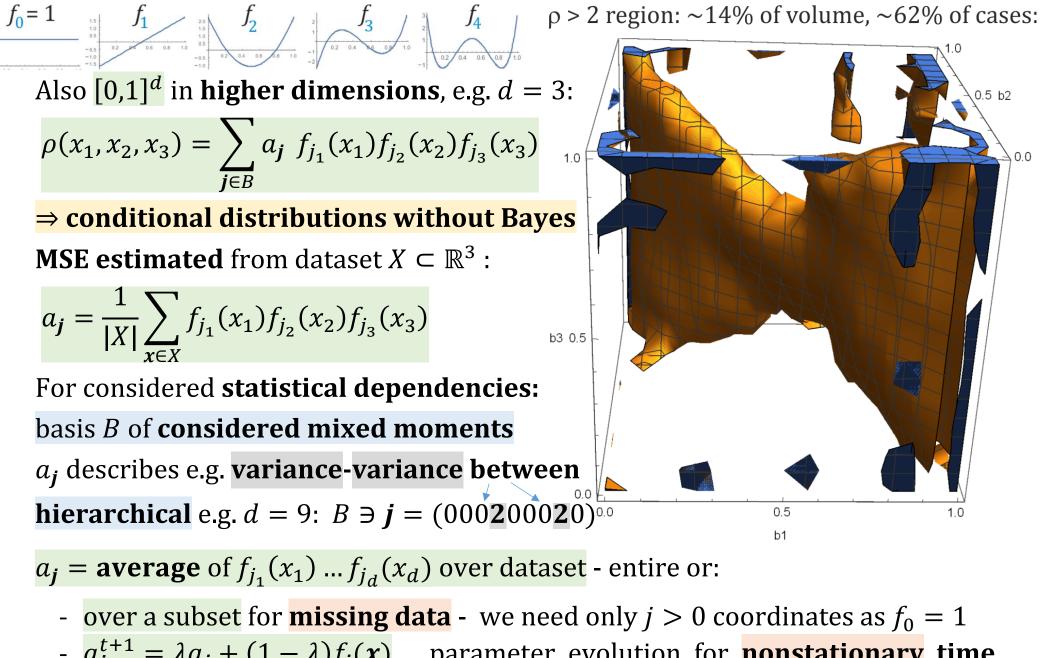
HCR m=9

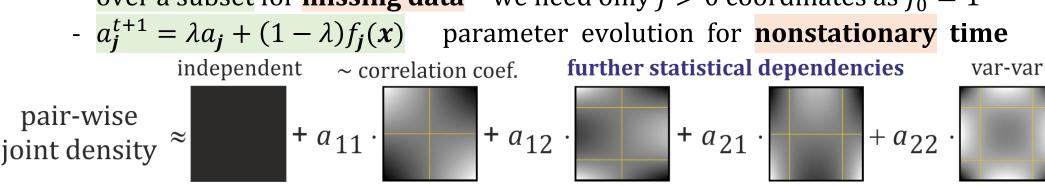


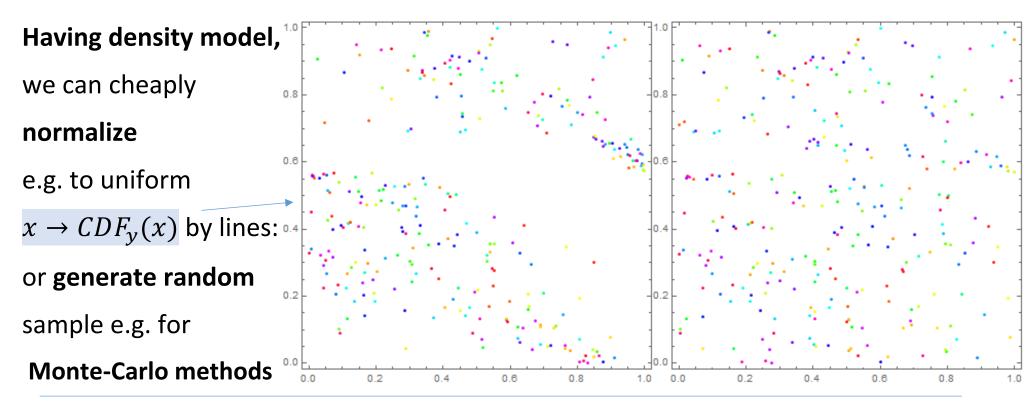
Weighted linear regression: $\beta = \operatorname{argmin}_{\beta} \sum_{i} w_{i} ((M\beta)_{i} - x_{i})^{2}$ $\beta = (M^{T}M)^{-1}M^{T}x \implies \beta = (M^{T}\operatorname{diag}(w)M)^{-1}M^{T}\operatorname{diag}(w)x$


 $\begin{array}{ll} & \underline{\text{Adaptive linear regression}} : \beta^{T} = \arg\min_{\beta} \ \sum_{t < T} \ \eta^{T-t} \left((M\beta)_{t} - x_{t} \right)^{2} \\ & \beta^{T} = (\mathcal{M}^{T})^{-1} y^{T} & \text{for exponential moving averages:} \\ & y^{T+1} = y^{T} + \eta (x^{T} M_{T^{.}} - y^{T}) & \mathcal{M}^{T+1} = \mathcal{M}^{T} + \eta \left((M_{T^{.}}) (M_{T^{.}})^{T} - \mathcal{M}^{T} \right) \end{array}$



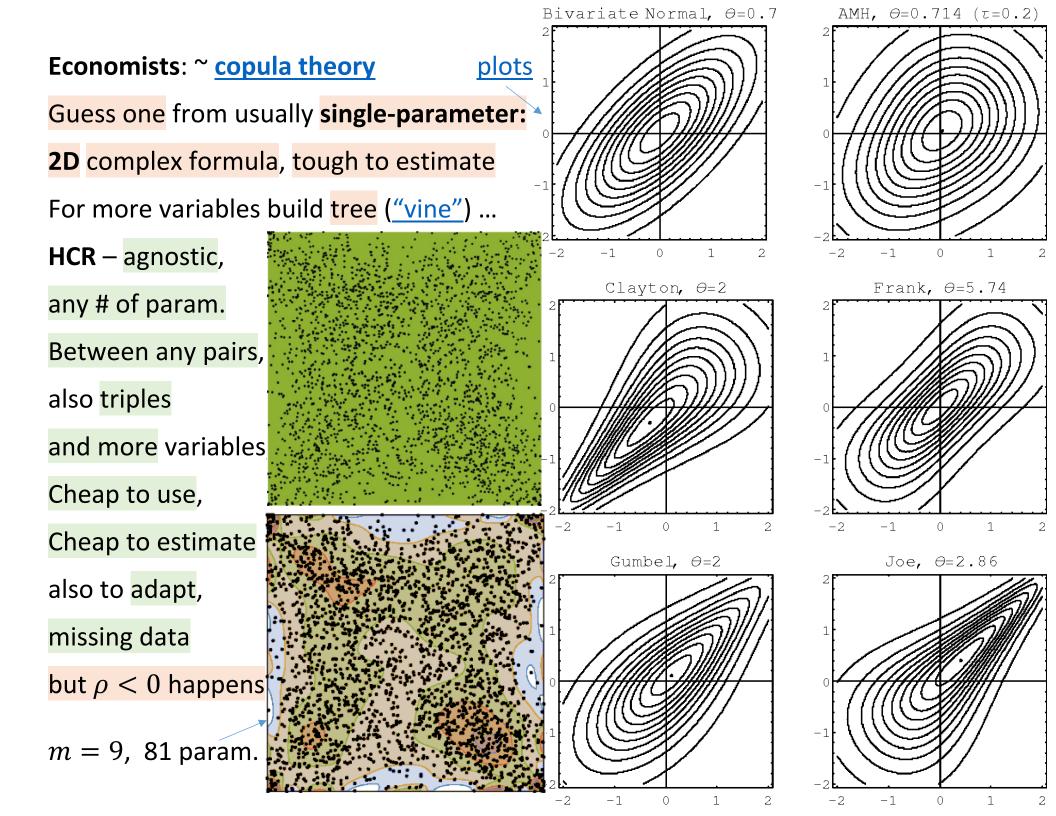

Having modelled joint distribution for missing data: $a_j = \frac{1}{|X_j|} \sum_{x \in X_j} f_j(x)$ substituting known coordinates to $\rho(x) = \sum_{j \in B} a_j \ f_{j_1}(x_1) \cdot ... \cdot f_{j_d}(x_d)$ we get joint distribution of missing coordinates (conditionals avoiding Bayes) Imputation – modelling missing values, e.g. as expected value for each coordinate However, sometimes **ambiguity**, e.g. circle as sample below we can handle. Here we can **model distribution of each missing coordinate** as polynomial, or even **joint distribution of multiple missing coordinates**




log-likelihood: mean $lg(\rho)$ on random 25% test, 75% training

Generalization problem: e.g. could we avoid splitting into training + validation?

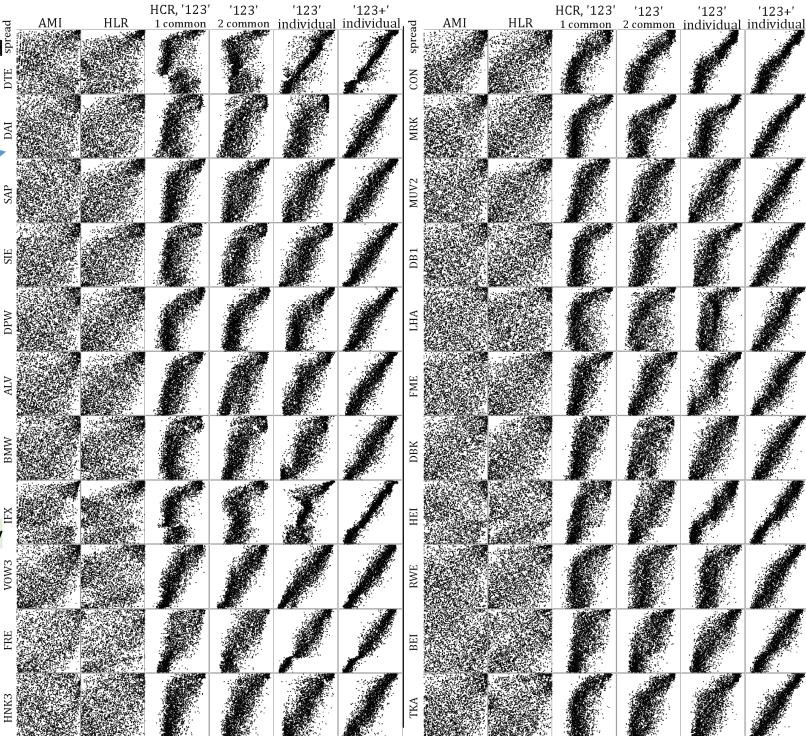
 $X - \text{test}, Y - \text{training set}, \text{ how to } \frac{\text{choose function basis } B \text{ to maximize log-lik } l}{2}$?

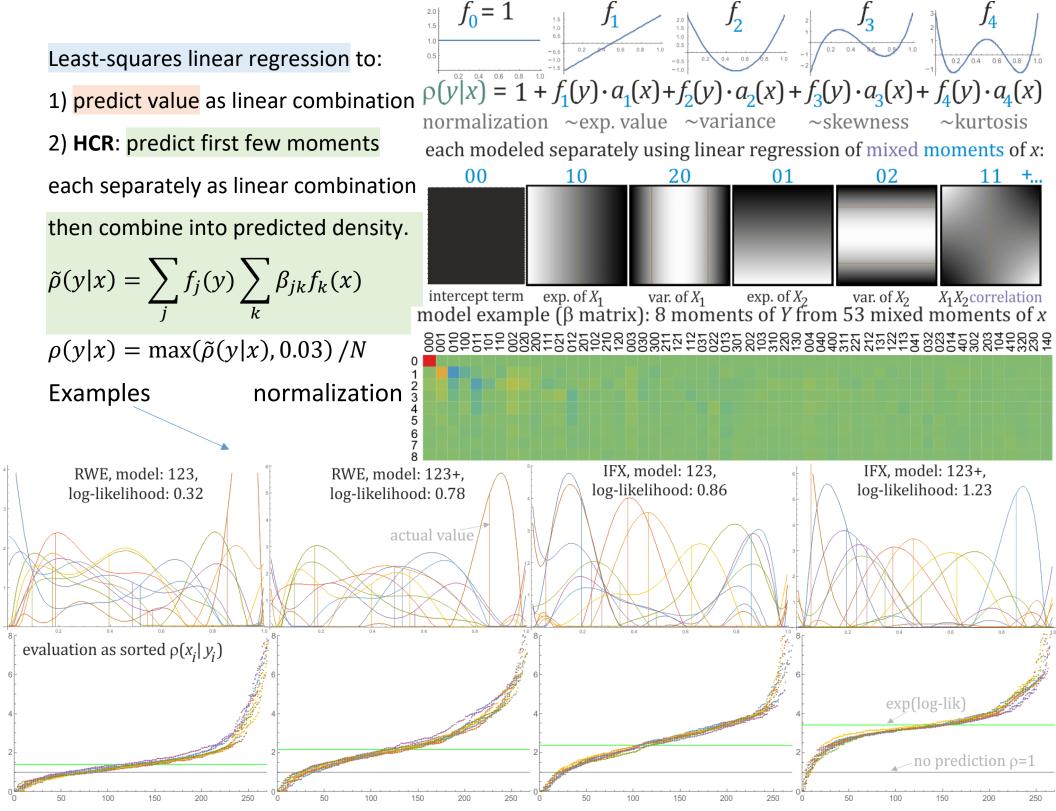

$$\rho(x) = \sum_{j \in B} a_j f_j(x) = \frac{1}{|Y|} \sum_{j \in B} \sum_{y \in Y} f_j(y) f_j(x)$$

$$= \frac{1}{|X|} \sum_{x \in X} \ln\left(1 + \sum_{j \in B^+} a_j f_j(x)\right)$$

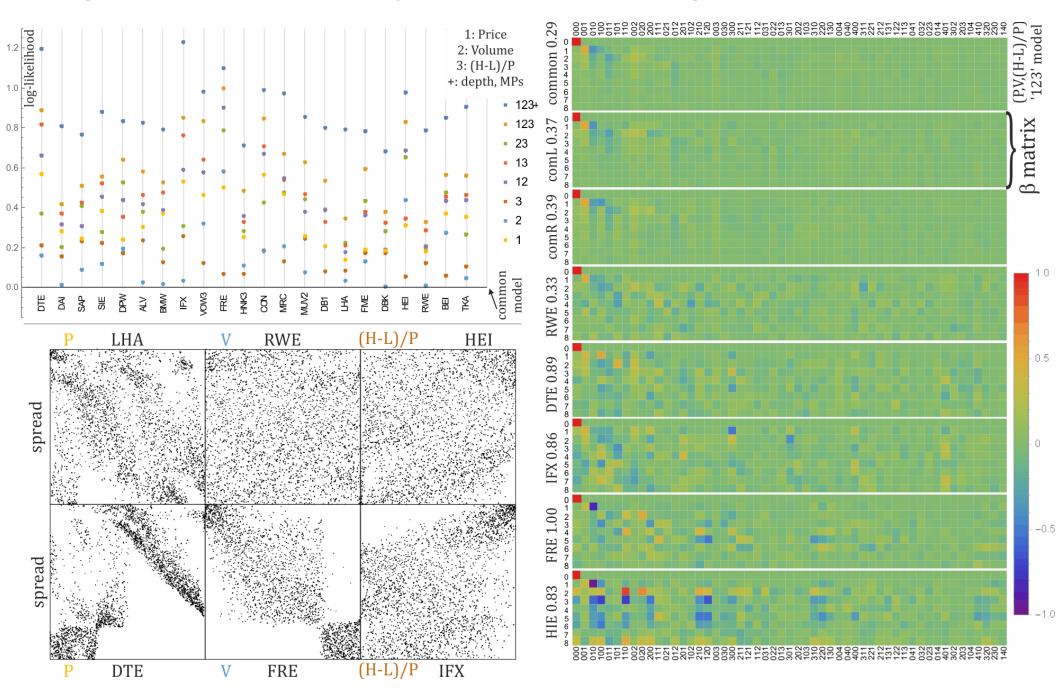
 $a_j = \frac{1}{|Y|} \sum_{y \in Y} f_j(y)$

can we ask separately for *j* about including in *B*?


Assume training and test set have the same statistics, e.g. value, variance for a_i ...



Predict value spread (bid-ask, DAX) from (price, volume, H-L) should be diagonal AMI, HLR – noise HCR – can handle predicting density \rightarrow expected value aXiv:1911.02361 Stat. in Transition


Density: additional variance:uncertainty skewness, kurtosis...

find quantiles, Monte Carlo rand., E Further nonlinear f $f(E(X)) \neq E(f(X))$

Large differences between companies – individual models give much better evaluation

Choosing model size: predict ≈ 8 moments

basis of mixed moments – difficult problem

1.0

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.0

1 00

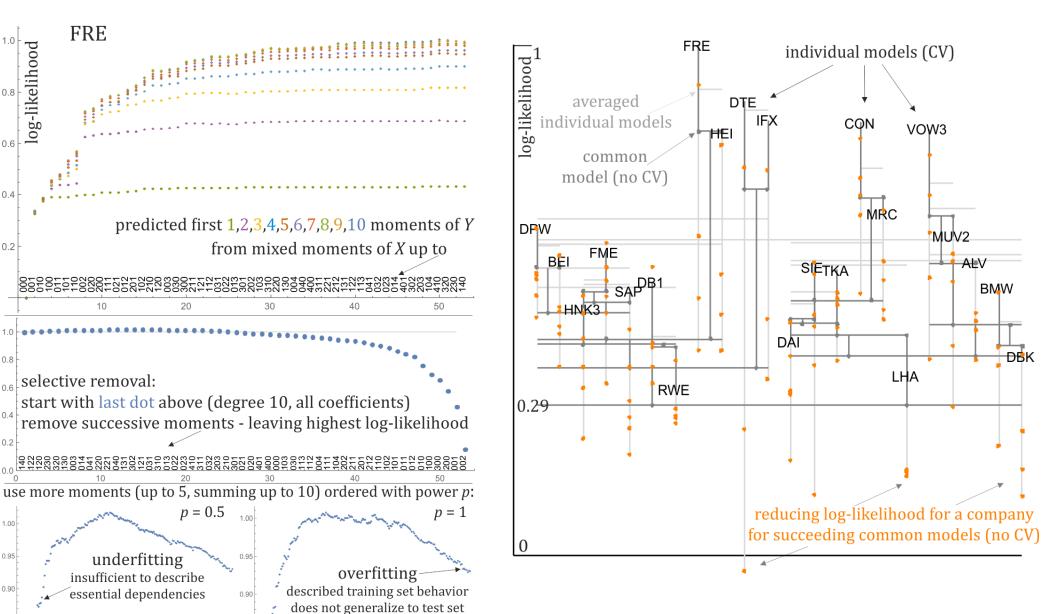
0.95

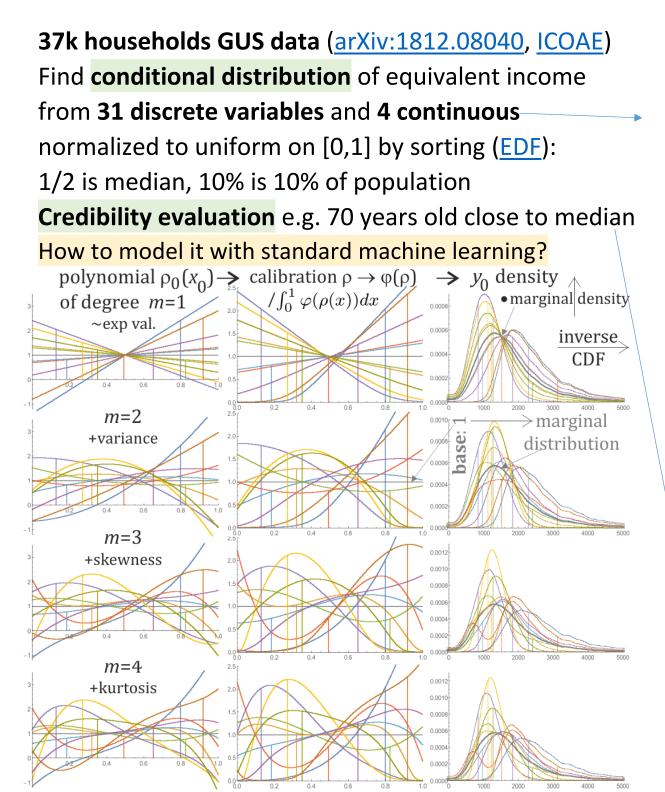
0.90

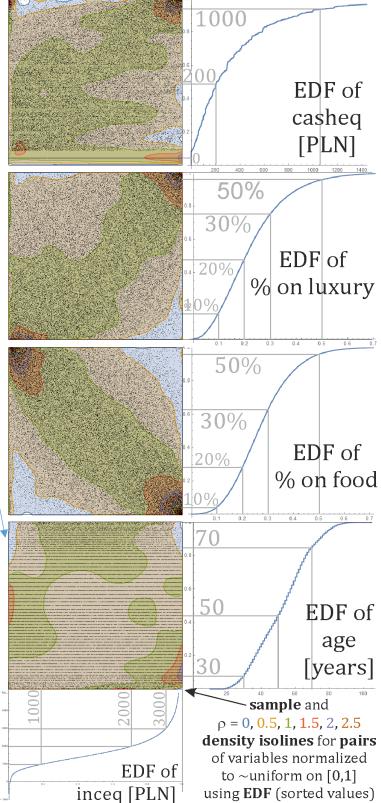
0.85

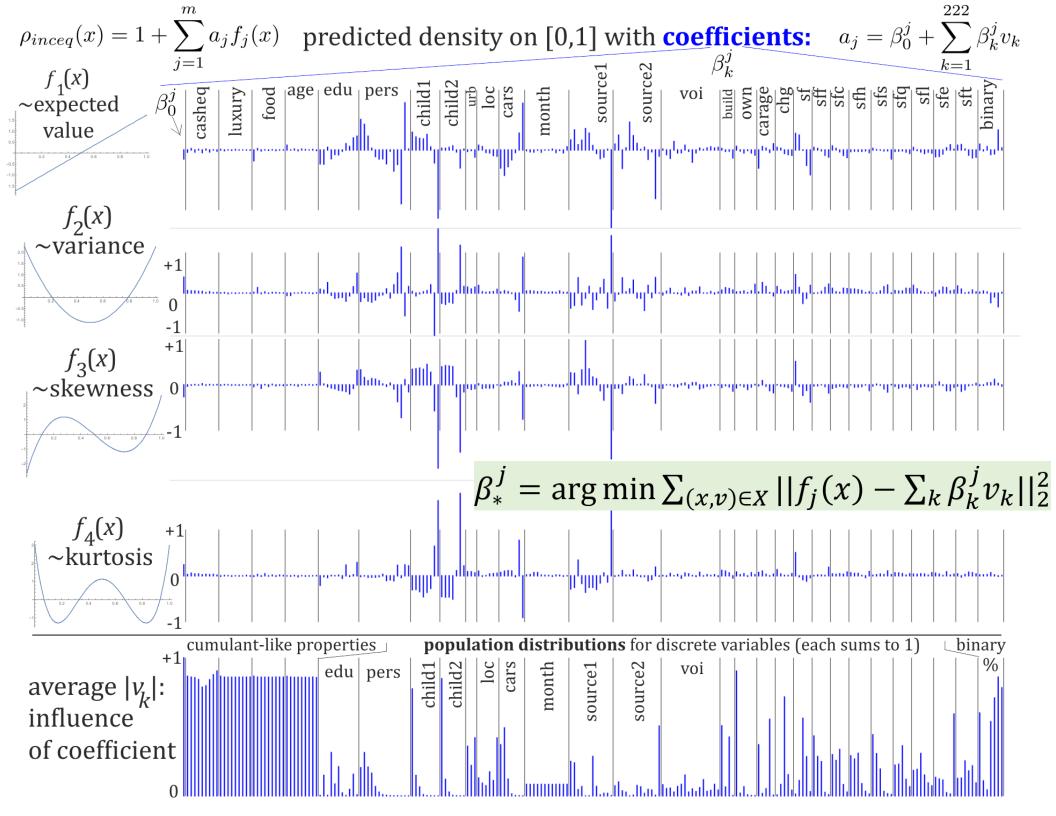
using mixed moments of X up to_{0.85}

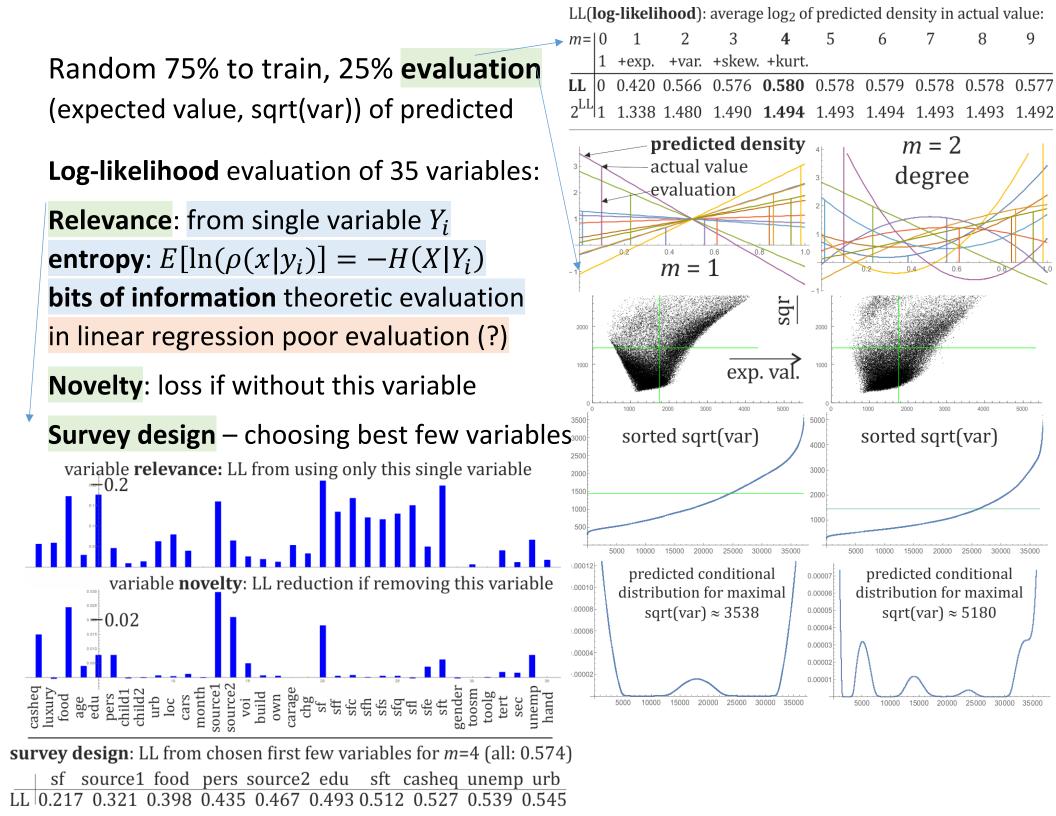
150

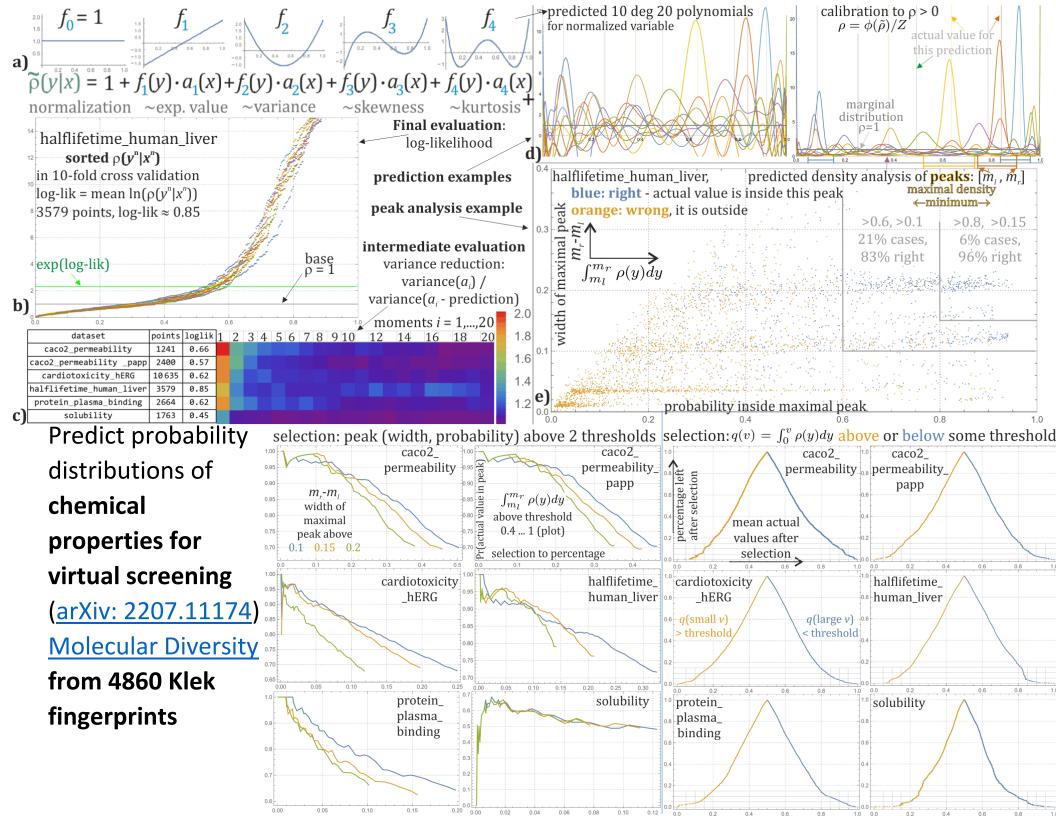

50

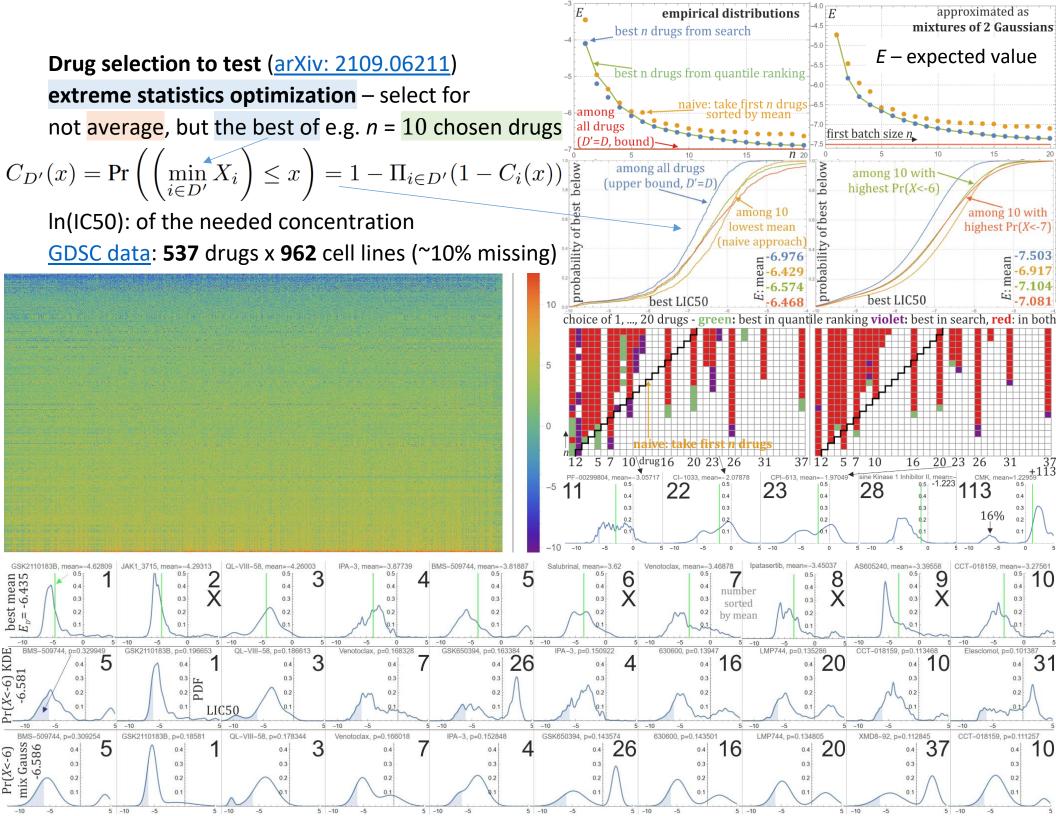

100

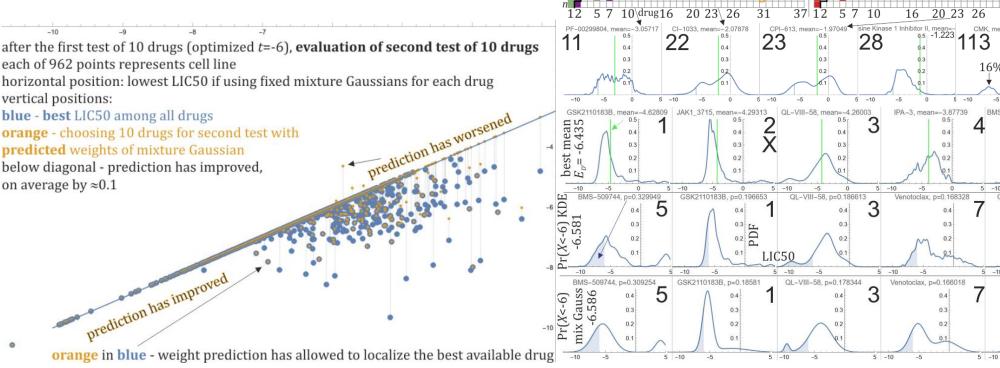

150


log-likelihood


Universality – searching for common models with lowest evaluation loss







How to optimize for **the lowest values** (not mean)?

- search enlarging e.g. 1000 most promising subsets,
- take best for some (which?) quantile: cheap approx
- are there some better ways? Literature?

Then **prediction of probability distribution** (data?) (based on tissue type, genetic ... previous tests) As mixture of A-B Gaussians (binomial: on-off gene?) predict w – probability of being in left Gaussian (A) regression from $Pr(A|X = x) = \frac{w \rho_A(x)}{w \rho_A(x) + (1-w)\rho_B(x)}$

Finally: normalize + predict polynomials (HCR)?

approximated as

mixtures of 2 Gaussians

31

E – expected value

first batch size n

best $t \approx -6$

empirical distributions

naive: take first *n* drug

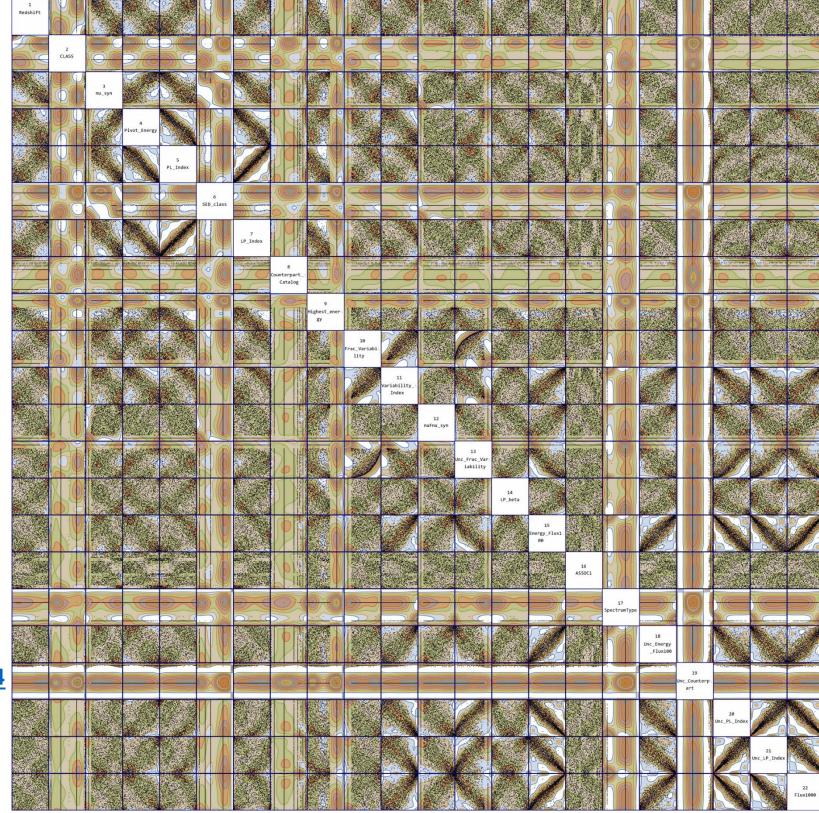
thresholding evaluation -6.4 E

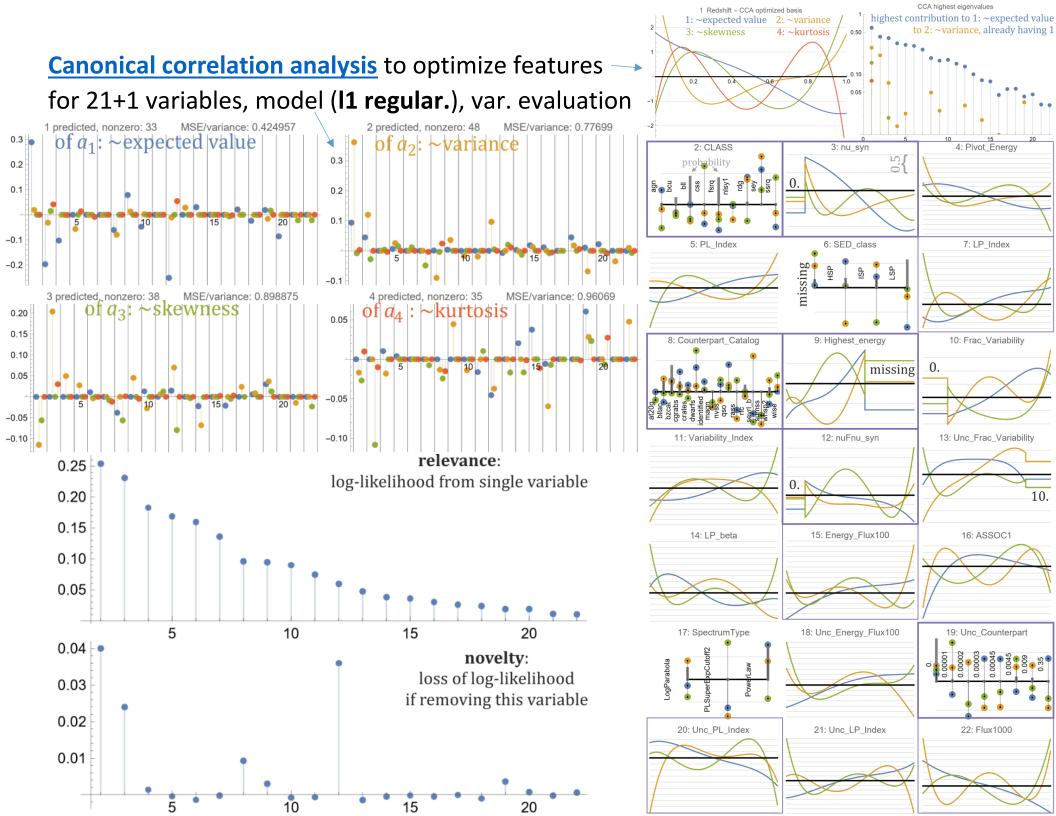
for 5, ..., 20 drugs

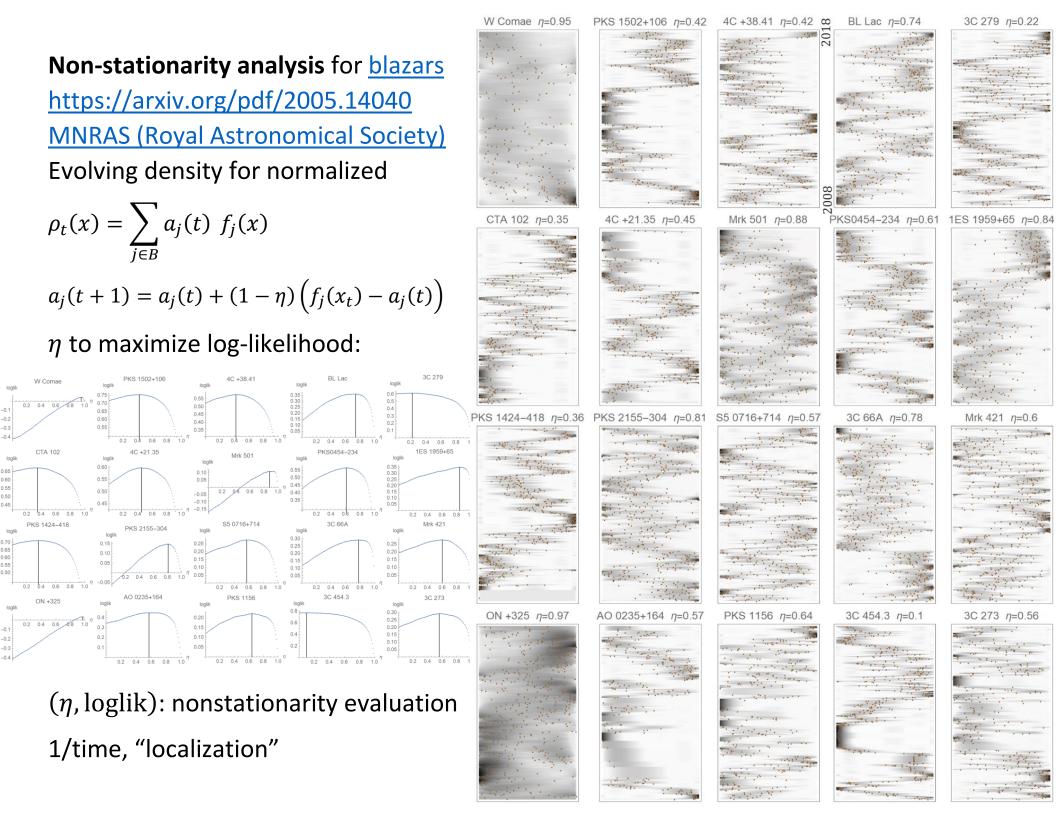
best n drugs from quantile ranking

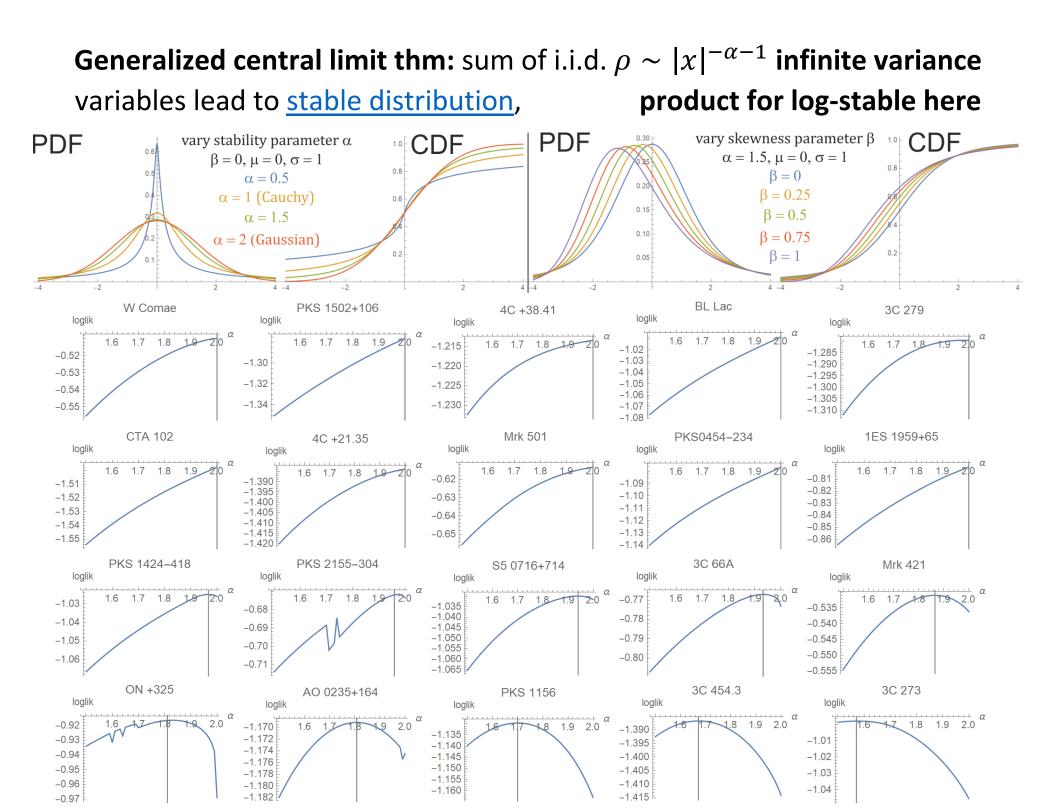
best *n* drugs from search

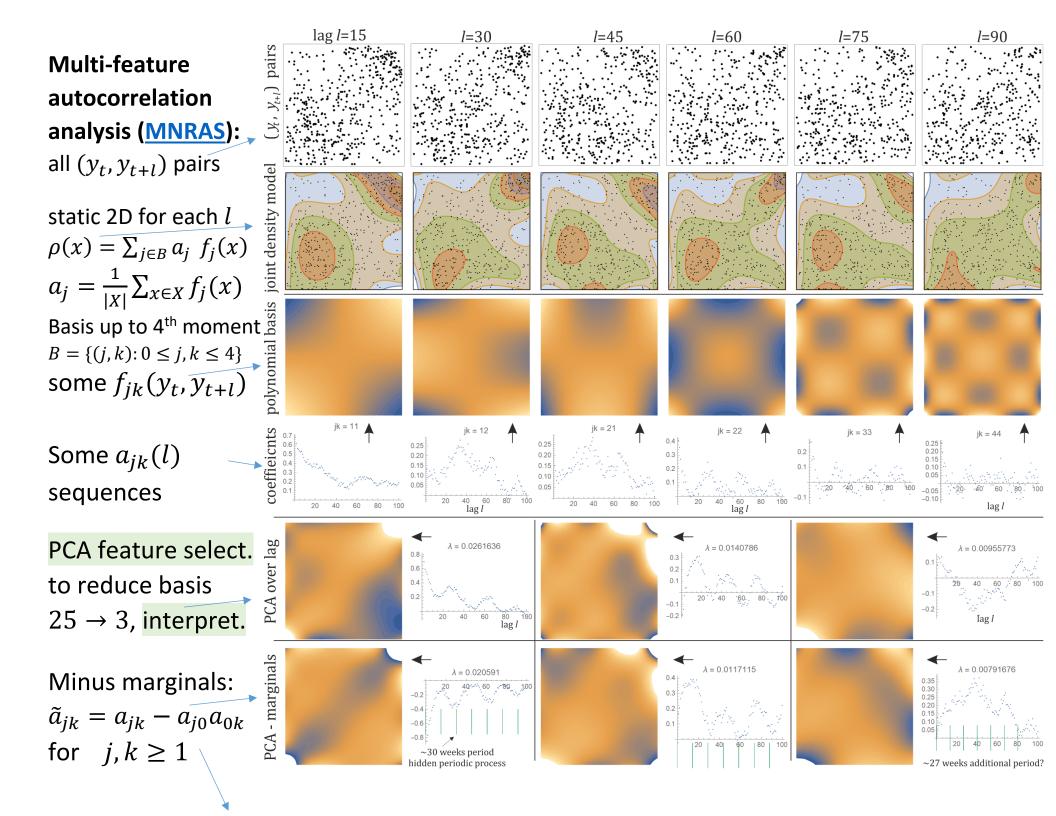
best $t \approx -6$

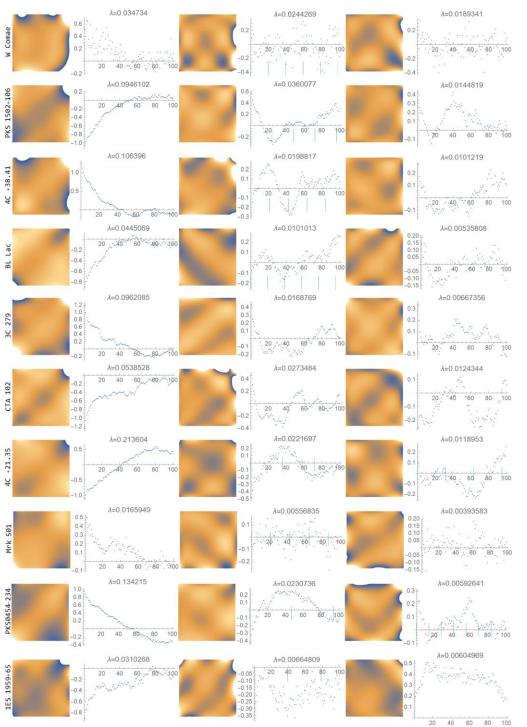

all drugs

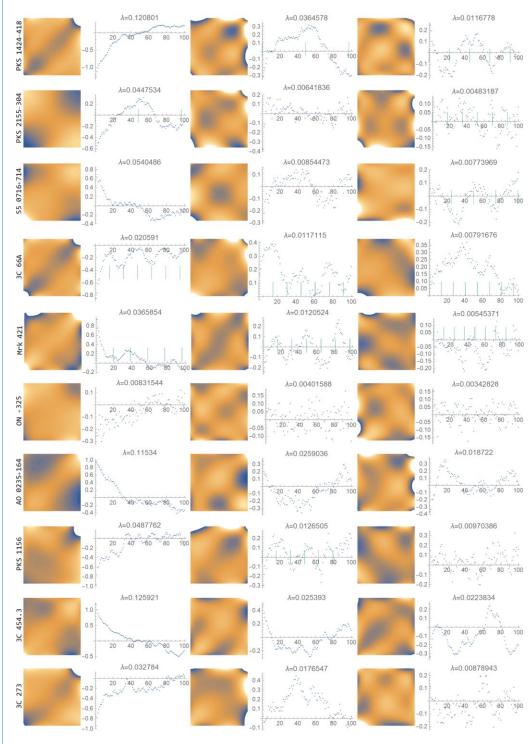

Of probability distribution of redshift of Active Galactic Nuclei

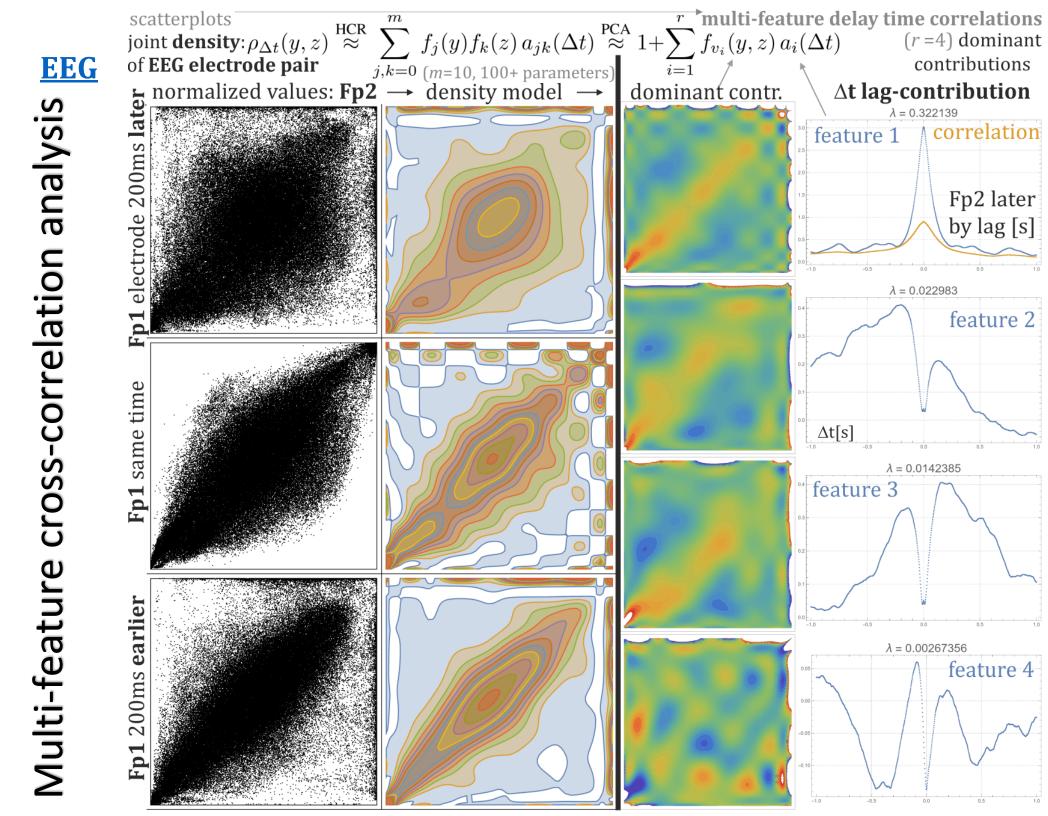

from 21 variables: discrete, continuous, combined

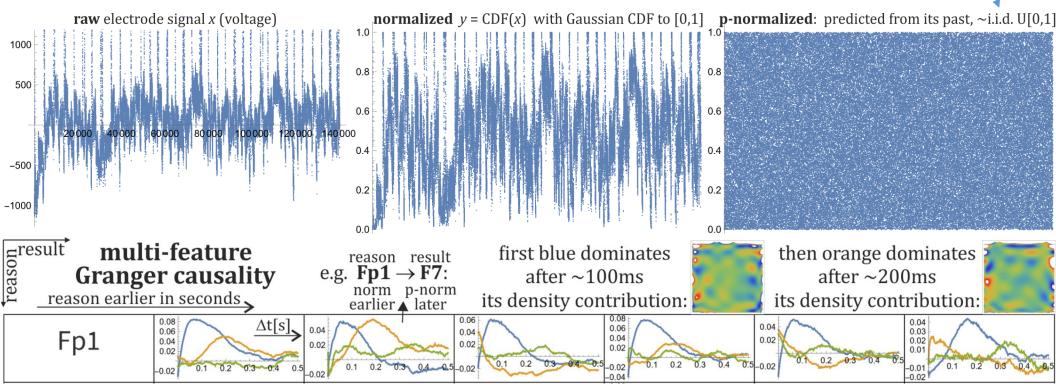

mostly describing spectrum

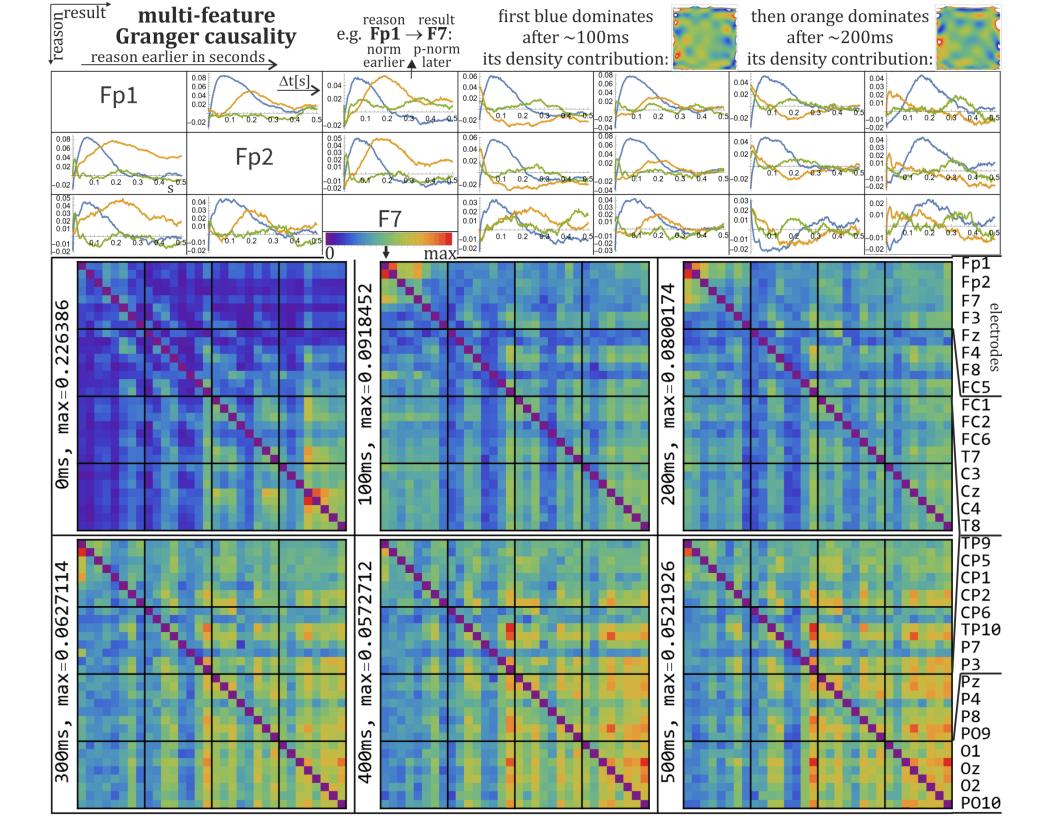

arXiv: 2206.06194 MNRAS 2024

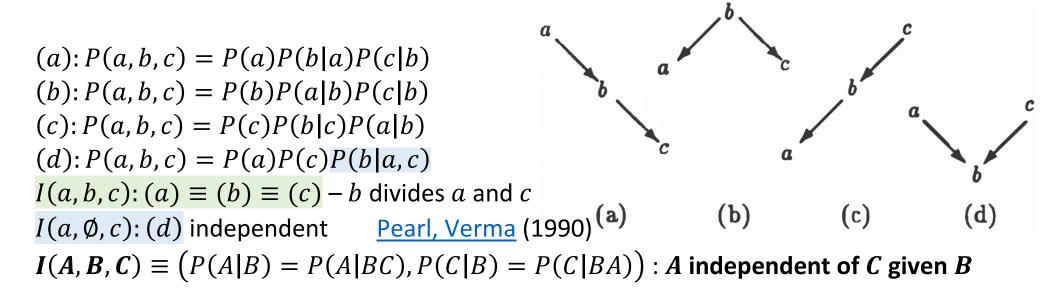


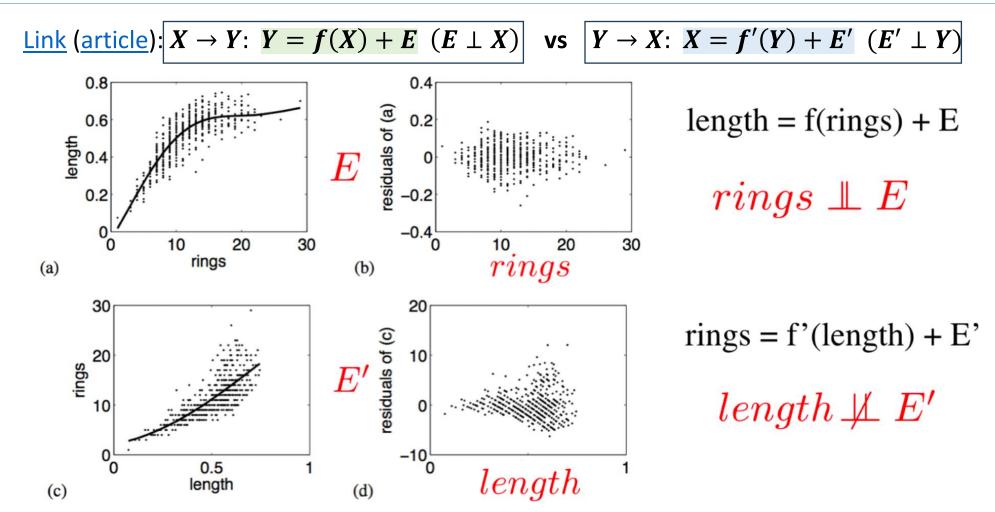






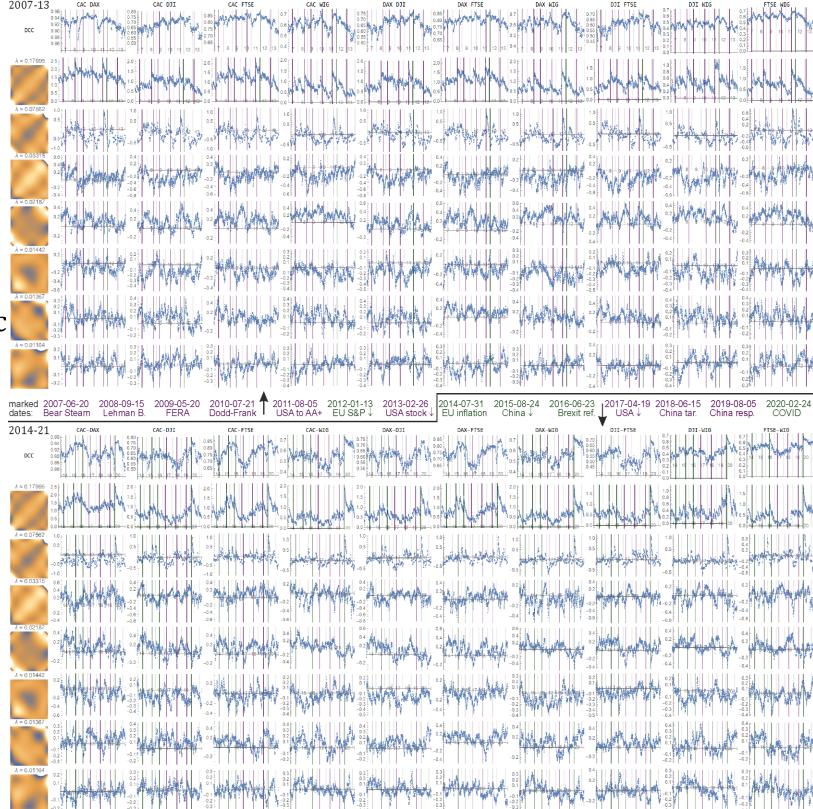

"If a signal $Y = (y_t)$ "Granger-causes" (or "G-causes") a signal X, then past values of Y should contain information that helps predict Xabove and beyond the information contained in past values of X alone"


Usually true/false: linear regression of X with/without $(y_{\tau}: \tau < t)$,

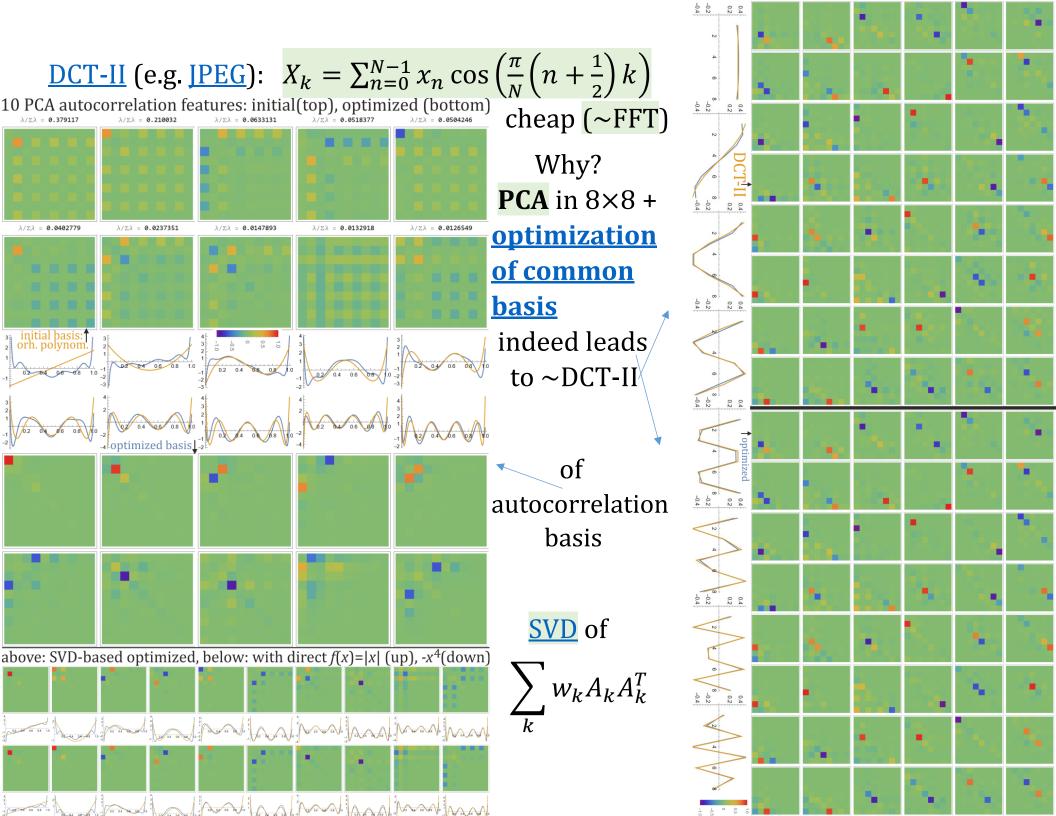

Proposed **multi-feature Granger causality**: multiple, delay dependence:

- **1)** Residue $r_t = x_t \text{"prediction of } x_t \text{ from its past": } (x_{\tau}: \tau < t),$ delay Δt dependence: find correlations in $(r_t, y_{t-\Delta t})_{\text{all } t}$
- **2) Multiple**: ~i.i.d. residue r_t , **probability prediction**: $r_t = \text{CDF}_{\tau < t}(x_t)$ multi-feature HCR+PCA: $\rho((r_t, y_{t-\Delta t})_t) \approx 1 + \sum_{i=1}^r f_{v_i}(r, y) a_i(\Delta t)$

arXiv:2311.13431 $\overline{X|Y} = \mathrm{CDF}_{X|Y}(X)$ normalized variable extracts individual information of X, removing information of Y $(X,Y) \leftrightarrow (\overline{X|Y},Y)$ reversible $(CDF_{X|Y}^{-1}) \downarrow_{Y X}^{\circ \circ}$ uniformize lines $(x, y) \leftrightarrow (\bar{x} = \text{CDF}_{X|Y=y}(x), y)$ **direct mutual information** (removing intermediate Z): $I(\overline{X|Z}; \overline{Y|Z})$ **decouple** to independent: $(X_1, \ldots, X_n) \leftrightarrow (\tilde{X}_1, \ldots, \tilde{X}_n)$: $\forall_{i \neq j} \tilde{X}_i \perp \tilde{X}_j, X_i \perp \tilde{X}_j$ Granger/interpretable models from individual decoupled variables Bias removal (e.g. gender, age) from data: not to be used by "ethical ML" How to model conditional CDF from many variables??? HCR ... ? + indirect (X_1, \ldots, X_n) decouple to individual information $(\tilde{X}_1, \tilde{X}_n, \tilde{X}_n) \quad \forall_{i \neq j} \tilde{X}_i \quad \bot \quad \tilde{X}_j, \tilde{X}_i \quad \bot \quad X_j$ Multi-feature correlation analysis (<u>CEJOR</u>)


evolving in time like

DCC – dynamic conditional correlations


E.g. for **Contagion** analysis

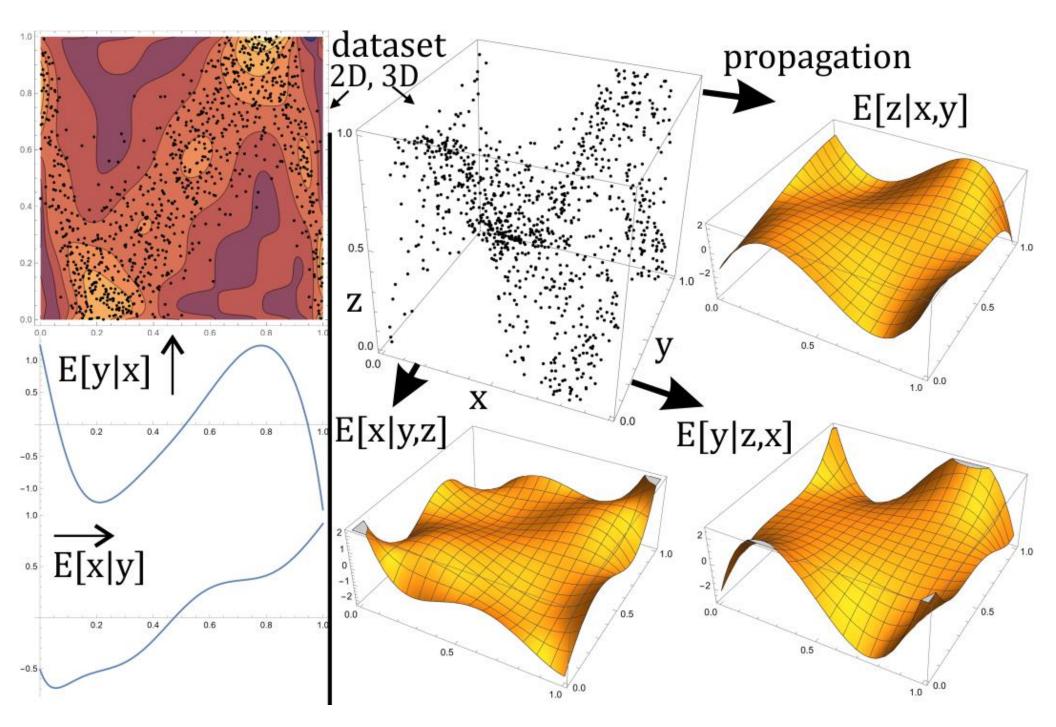
between markets

e.g. to detects crucial events

4																							- ()	
	Imaa	ъD	wal		ofo		+ da	to	ntion	CAC	2		1 10 1	0 ⁴ 000 10 1	. 1	0 ⁴ 00 00 10		10 ⁴ 2000 100 10 10	ull.	10 ⁴ 1000 100 10	սհմ	DAX DJJ	WIG DJI	ITSE WIG
1/	1/mean P-values of event det							elec	cuon	DAX	<pre> 10⁴ 1000 100 100 </pre>		1.		1 10 1	0 ⁴ 00 00	10	10 ⁴ 200 100		10 ⁴ 1000 100		PCA2 CAC		
	vent							Ab	breviation		10	11				10	Ш	10	ليلي	10	لىلى			
	ear Stearn baile		-	funds with	\$20 billio	n^2		Bea	r Stearn	L DJ	10 ⁴ 1000 100	11	1 10	000			1(10 ⁴ 200 100	ŕ	1000		PCA4	e) DC	FTSE A 5
	ankruptcy of L								man B.		100		ıll '	00	uШ			10	- 11 ה	100 10 1	ath			
	esident Obama	-						FER			10 ⁴		1	04	1				ed	104				
	odd–Frank Wa				Protection	n Act enac	cted ⁵		ld–Frank	FTS	E 100 10			00	_ 1	00	ih.		/erag	100 10	Ъŭ			FTSE
	&P downgrade								A to AA+		1 L		1	1 1	1	1 1		104	av 1/p	1 U V Z V				
2012-01-13 Sta	andard & Poor	's downgra	ades Franc	e and eigh	t other eur	ozone cou	ntries ⁷	EU	S&P↓	WIG	1000 3 100	ul –	10 . 1	0 ⁴ 000 00 1	. 1	00				D D D D D D D D D D D D D D D D D D D				
	merican stock	•				ctions very	negativel	y ⁸ USA	A stock ↓		10 1			10		10	Ш	10	цШ			ETS COL		FTSE
2014-07-31 An	nnouncement c	of bad data	about infl	lation in Eu	ıro zone ⁹			EU	inflation		-06-20 Stearn	-15 B.	-20	-07-21 -Frank	3-05 AA+	13 →	-26 ck↓	-31 1.	- 24 →	-06-23 t ref.	-19	-15 ar.	98-05 resp.	-24
2015-08-24 An	nnouncements	of bad ecc	onomic dat	ta from Chi	ina ¹⁰			Chi	na ↓			2008-09- Lehman	9-05- FERA	0-07 d-Fn	lo lo	2-01- S&P	2013-02-26 USA stock↓	4-07-3	2015-08- China	2016-06 Brexit r	2017-04-19 USA ↓	8-06- na ta		2020-02- COVID
2016-06-23 Bre	rexit referendu	m^{11}						Brez	xit ref.		2007 Bear	2008 Lehir	2009. FI	2010- Dodd-	2011- USA 1	2012- EU S	201 USA	2014- EU i	201 C	2016- Brexit	201	2018-0 China	2019- China	202
2017-04-19 An	Announcements of bad economic results of US companies ¹²							USA	4↓	DAX	M M M V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	where we	w w w		W	The m	white white	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ar W	7 7	27		
2018-06-15 Be	Begin U.S. – China Trade War ¹³							Chir	na tar.	CAC	met met	N. un	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ m	m m	ma	m m	m m	w~	m w	2-	when we	2 ~	~~~~~
2019-08-05 На	Halting by China purchases of U.S. agricultural products ¹⁴							Chir	na resp.	н	MM	vm sr	- 4 M- 1 M-	W W W			-1- W	m m	~~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 - 2	J. J.
2020-02-24 The	The coronavirus outbreak spread worsened substantially outside China ¹⁵							CO	VID	C−D	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M A		2 ~	w w	Mw	A mw	5 ~~	T V	22	~ m	Jr Ww	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	CAC-DJI CAC-FTSE CAC-WIG DAX-DJI DAX-FTSE DAX-WIG DJI-FTSE D						DJI-WIG	FTSE-WIG	0	vn m	~~~~~~	m -	2 min	~ wh	mm	Jr N	myn	mm	v~ vi	mar and	w w	mar	min	
2007-06-20 Bear Stearn			↑↑↑↑ □ □ □ □ □ □ □	↑↑			↑↑↑ □ ■ □ ■ ■	↑ ↑ □ ■ □□ ■ □		FTSE	$\frac{n}{n}$	m m	Mr M	× ~~ ~~ ~~		1- 1~	Jr W	In m	1	m m M w		$\frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2008-09-15 1 1	* * t_1 1_tt1t	* * 1 <u>↑</u> 1	* ↑↑ ↑↑		↓↓↓↓ ↑↑↑↑↑	* 1 1	↑↓↓↓ ↑↑↑	↑ ↑ ↑ 1		CAC-	ha a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	~ ~ m	· ~ ~	- WW - ~	mm	my pm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	me no	mim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V W	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lehman B. ↓↓			↓ ↓	↓↓↓				↓↓↓		IJ	nn	mot mit		N W W	I	m m	J. J.	w w	V V		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 × ×	w -m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2009-05-20 FERA										AC-WI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-1 -7 ~4 	1 × ~	m m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	J mo	N W	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2010-07-21						↑ ↑				0	~ m	n	m w	1 mm m	- n m	~ m	~~~	Nm	w v	m m	-1 ~r	~~~~	w wh	~~~~
Dodd-Frank ↓↓↓↓ 2011-08-05 ↑		↓'↓↓↓↓↓↓↓ ↑↑↑↑		↓↓↓ ↑ ↑↑ ↑↑	↓ ↓↓↓↓ ↑ ↑↑	↓ ↑ ↑↑				ICO	m m	m m		m m m			The way	m T	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>~~</u> ~	24 V		1	$\left \frac{\chi}{\sqrt{2}}\right $
USA to AA+			↓↓↓ ↓					■ ■ ■ ■ ■ ■		DAX-	in m	n n	MA	m m m	m m	Mrv	N m	m ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mon	m an	~ m	July -	-w ~
2012-01-13		↑↑ ■■■□□ ■ ■		↑↑ ↑↑ ■	↑ ■□ ■ ■□ ■		↑ ■	↑ 1		ш	~~ ~~	m m	· www.w	v v v	, J. J.	N N	W W	m m	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EU S&P ↓ ↓↓↓↓ 2013-02-26↑	<u>†</u> †	† ↑ ↑	↑ ↓↓ ↓ ↑	↓ ↓ ↑	↓ ↓ ↓ ↓ ↑	↓↓ ↓ ↑↑	↓↓ ↓ ↑ ↑	↓ ↓	↓ ↓ ↑	X-FTSE	N L V V	v1 ~	~~~ ~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VI m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N W	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	J. Mw	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
USA stock↓ ↓ ↓ ↓			↓ ↓↓		↓↓		↓↓↓	↓ □□□□□□		DAX	w-u	-2 2	~ ~ ~	- mm	w m	w m	~ ~	N m	my him	mw	w m	when when	mm	~~~~~
2014-07-31 ↑ ↑ EU infl. ↓ ↓		↑ ■│□□□■□□■ ↓ ↓	↑ ↑↑ ↑ ■ ■ ■ ■ ■ ■ ■ ■ ■							DIM	M. M.	wh wh	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N N 1 N N		m m	1 V V 		5 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	1 × ×	1	
2015-08-24 ↑ ↑↑	<u>† † †</u>	† ††	t	<u> </u>	1 11	<u></u>	<u>†</u> †	↓↓ ↑↑↑	↑ ↑ ↑ ↑ ↑ ↑	DAX-	ww we	w wy		n m w	1 - h ym	ma	m m	w w	Mor your	w w	we we	m m	w h	-h wh
China↓ '↓↓↓		, ††↑†		□ ■ ↓↓↓	. ↑↓↓↓				· ↓	щ	~ ~ ~ ~ ~ ~	m m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v w w		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	The we	W W	N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ju Ju	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2016-06-23 ↑ ↑ Brexit ref.		↑↑ ■│■□■■■□ ↓↓↓↓								I-FTS	m m	M W		" ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$\frac{1}{2}$	2 m m	~ m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	J M
2017-04-19	↑ ↑ ↑ ↑ ↑	† 1	↑ ↑↑↑ •	↑ ↑	1	↑ ↑ ■ ■ ■ □ □ □ □ ■		Ŷ		6	N T	m in	. v.	- m ~	~~~	m In	min	~ Www	mm	~ N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M. M.	~ m	mm Mun
USA ↓ ↓↓ 2018-06-15 ↑ ↑		↓↓↓↓ ↑ ↑ ↑	↓ ↓ ↓ ↑ ↑	↓ ↓ ↑		↓ ↓ ↑ ↑ ↑		↓ ↓ ↓ ↑ ↑	↓' ↓	DIW	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\frac{\sqrt{2}}{2}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 5 m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\frac{\gamma}{\omega}$	Nr Nr	The she	<u>~~</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 7	w m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
2018-06-15 I I China tar. ↓↓										-ICQ	1 m	~ w	~~ ^	w w ~	m m	mm	mm	were me	m m		un	w w	m w	
2019-08-05 1 11		† †† ††	↑↑ ↑ □	↑↑ ↑ □	↑ ↑↑ ↑			† †† † 1		U	~ ~ ~	who the	~~~~ * *	1 m m	· · · · · · · · · · · · · · · · · · ·	m m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	No W		m m	W m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~ ~~ ~~
China resp. ↓↓↓ 2020-02-24 ↑ ↑↑ ↑	↓ ↑, ↓ ↓↓	, ††↑	+ + + +	. † †↓	'↓↓↓ ↑↑↑↑↑↑↑↑	. ↑ ↓ ↓	. ↑ ↑↓	'↓ 1 11 11	t . t↑t	H	m m	WL m	57 ~ m ~	~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2. 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v m	J~m	N~~	N. M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2~~
COVID				∎∣∎∎□∎∎∎□ ↓↓						FTSE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m m	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	whe	m m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	w w	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	W ~~	why wh

People usually focus on **prediction of values** (\rightarrow of moments \rightarrow density) where **prediction of probability distributions** gives some **advantages?**

Prediction of value is of e.g. Gaussian around this value

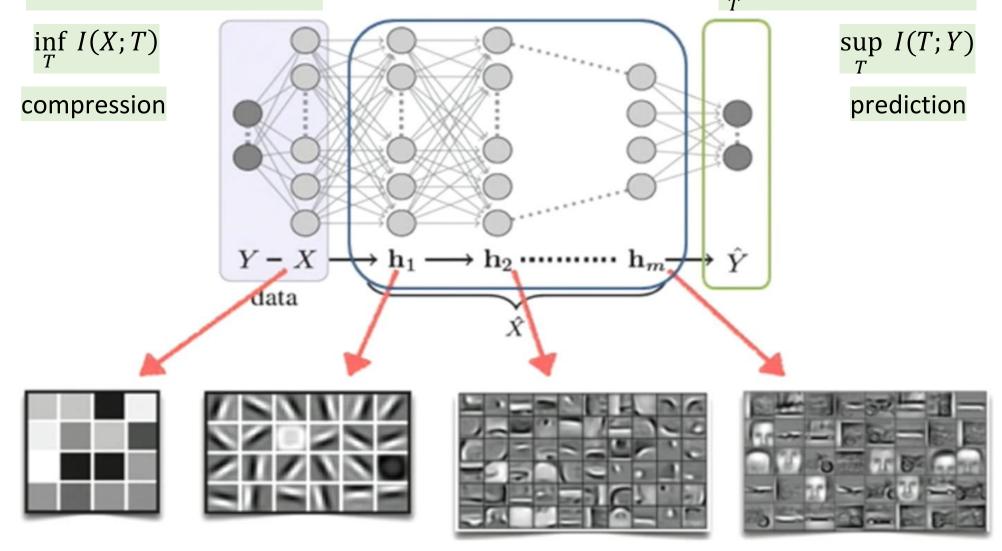

value prediction

P(Y,Z|X)

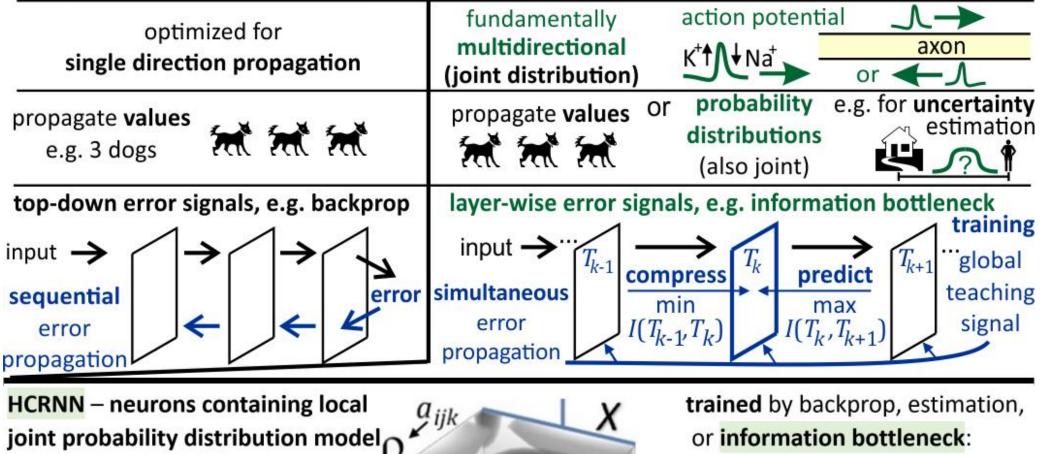
- control of prediction **uncertainty**, prediction of higher moments,

- statistical modelling in data compression needs probabilities,
- controlling **multi-modality**, e.g. Gaussian-mixture,
- proper variable contribution evaluations e.g. with conditional entropy,
- Monte-Carlo: generate random scenarios with close statistics,
- credibility evaluation, find outliers low probability datapoints,
- nonstationarity analysis: evolution of probability density,
- asymmetric correlations e.g. a_{12} implying causality direction?
- extreme statistics optimization e.g. best batch of drugs to test,
- **uniformize** data in multiple dimensions e.g. $x' = CDF_y(x)$,
- selection for extreme, certain values e.g. virtual screening of drugs,
- Bayes scenarios directly from joint distribution
- biology-inspired neural networks ...

Multidirectional propagation of conditional distributions, their expected values

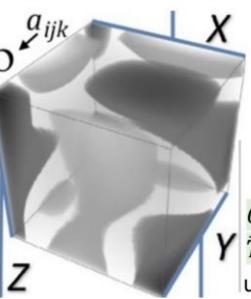

Neuron containing local joint distribution model – of its connections with (a_j) e.g. a_{ij} matrix (d = 2)/tensor (d > 2) as neuron parameters propagation as conditional densities/expected values E[x|y], E[y|x]

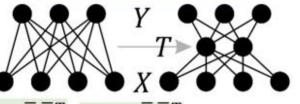
$$\rho(x,y) = \sum_{i,j \ge 0} a_{ij} f_i(x) f_j(y) \xrightarrow{(a_{ij}) \text{ in neuron } 1.0}_{d = 2 \mod el} E[y|x] \\
d = 2 \mod el_{0.8}^{0.6} \\
a_{ij} = \frac{1}{|\overline{X}|} \sum_{(x,y) \in \overline{X}} f_i(x) f_j(y) \xrightarrow{\text{direct}}_{\text{estimation}} 0.4 \\
\rho(x|y) = \sum_{i \ge 0} f_i(x) \frac{\sum_j a_{ij} f_j(y)}{\sum_j a_{0j} f_j(y)} \\
E[x|y] = \frac{1}{2} + \frac{1}{2\sqrt{3}} \frac{\sum_j a_{1j} f_j(y)}{\sum_j a_{0j} f_j(y)} \\
\rho(y|x) = \sum_{j \ge 0} f_j(x) \frac{\sum_i a_{ij} f_i(x)}{\sum_i a_{i0} f_i(x)} y \xrightarrow{(a_{ij}) f_i(x)}_{\sum_i a_{i0} f_i(x)} y \\
E[y|x] = \frac{1}{2} + \frac{1}{2\sqrt{3}} \frac{\sum_i a_{i1} f_i(x)}{\sum_i a_{i0} f_i(x)} x \xrightarrow{(a_{ij}) f_i(x)}_{\sum_i a_{i0} f_i$$


Can we directly train intermediate layers? (video)

<u>Naftali Tishby</u>, **information theoretic view** – permutation, bijection independent Markov process between layers, **first extract/compress essential information** reducing **mutual information** [**bits**] $H(X) \ge I(X; T_1) \ge I(X; T_2) \ge \cdots$

Information bottleneck (Tishby): for $X \to T \to Y$ optimize $\inf_{X \to T} I(X;T) - \beta I(T;Y)$




MLP, KAN parametrizations <u>reducible</u> HCRNN data structure, biologically plausible

as $\rho(x) = \sum a_i f_i(x)$ density (a_i) – tensor, $f_i(x)$ – fixed basis

Can be degenerated to KAN-like allows propagation in any direction of values, probability distributions e.g. $\rho(x|y,z)$, $\rho(y|x)$, E[z|x,y]

 $C_X = \overline{X}\overline{X}^T$, $C_Y = \overline{Y}\overline{Y}^T$ batch features $C_x - \beta C_y = 0 \operatorname{diag}(\lambda_1 \leq \cdots \leq \lambda_n) O^T$ $\mathbf{Y} \ \overline{T} = O_{n \times 1..k}$: k features on size n batch update NN weights toward: $\overline{X}^T \overline{T}$, $\overline{T}^T \overline{Y}$ **NN** arXiv:2405.05097 Reduced to ~KAN for pairwise-only dependencies Additionally:

- can extend to

triplewise or higher,

- omnidirectional propagation $\uparrow \leftrightarrow$,

- direct a_i parameter estimation/update,

- propagate values or probability distributions,

- interpretation: moments

- cheaply calculate entrop mutual information,

- additional training e.g. tensor decomposition,

information bottleneck

$f_0(x) = 1$ $f_1(x)$	nce $f_2(x)$ ~skewness $f_4(x)$ ~kurtosis								
normalization	~exp. value	$f_3(x)$							
d=3 variables	basis in [0,1]	$f_0 = 1, f_1 \propto 2x - 1, \ \int_0^1 f_i(x) f_j(x) dx = \delta_{ij}$							
HCR neuron	↓↑ normalize	$x \leftrightarrow \text{CDF}(x) \sim U[0,1]$ empirical/param.							
	HCR joint density	$\rho(x, y, z) = \sum_{ijk \in B} a_{ijk} f_i(x) f_j(y) f_k(z)$							
$\begin{array}{c} & \ \ \ \ \ \ \ \ \ \ \ \ $	static estimation from \overline{X} dataset	mean: $a_{ijk} = \frac{1}{ \bar{X} } \sum_{(x,y,z) \in \bar{X}} f_i(x) f_j(y) f_k(z)$							
	dynamic (EMA) model update	$a_{ijk} \xrightarrow{(x,y,z)} (1-\lambda)a_{ijk} + \lambda f_i(x)f_j(y)f_k(z)$							
	$ \rho(X = x y, z) \approx $ $ \uparrow \text{ conditional} $	$\sum_{i} f_i(x) \frac{\sum_{jk} a_{ijk} f_j(y) f_k(z)}{\sum_{jk} a_{0jk} f_j(y) f_k(z)} \qquad \frac{\text{current}}{\text{normal.}}$							
	$E[X = x y, z] \approx$ ↑ propagation ?	$\frac{1}{2} + \frac{1}{2\sqrt{3}} \frac{\sum_{jk} a_{1jk} f_j(y) f_k(z)}{\sum_{jk} a_{0jk} f_j(y) f_k(z)} \qquad \text{sufficient} \\ \text{if norm.}$							
ZY	$ \rho(y, z x) \approx $ \downarrow conditional	$\sum_{jk} f_j(y) f_k(z) \frac{\sum_i a_{ijk} f_i(x)}{\sum_i a_{i00} f_i(x)} \qquad \frac{\text{current}}{\text{normal.}}$							
$\rho(\mathbf{x}) = \sum_{j} a_{j} f_{j}(\mathbf{x})$ $\rho(x, y, z) \text{ for } d = 3$	$E[Y = y x] \approx$ $\downarrow propagation?$	$\frac{1}{2} + \frac{1}{2\sqrt{3}} \frac{\sum_{j} a_{1j0} f_{j}(y)}{\sum_{j} a_{0j0} f_{j}(y)} \stackrel{\text{polyn. sufficient}}{\underset{\text{like if normalized}}{\text{KAN-}}}$							
$\begin{array}{c} \text{propagation:} \\ \rho(x \mid y, z) \\ \rho(y, z \mid x) \end{array}$	entropy, mutual information	$H(X) \approx -\sum_{j \in B_X^+} (a_j)^2 [\text{nits}]$ $I(X;Y) \approx \sum_{j_X \in B_X^+} \sum_{j_Y \in B_Y^+} (a_{(j_X, j_Y)})^2$							
S, pairwise	basis optimization	$M_{i,jk} = a_{ijk}$ SVD: $MM^T = \sum_i \sigma_i \boldsymbol{v}_i \boldsymbol{v}_i^T$							
$\mathbf{y}, \mathbf{\hat{-}KAN}: i \cdot j \cdot k = 0$	$(y,z) \rightarrow x$ $\{f_i(x)\} \rightarrow \{g_i(x)\}$	$g_i(x) = \sum_j v_{ij} f_j(x) \qquad v_i \cdot v_j = \delta_{ij}$ $f_i = \sum_l v_{li} g_l \qquad a_{ijk} \to \sum_l v_{li} a_{ljk}$							
HCR neural network	How to train intermediate layers/variables? c /- standard backpropagation of a _{ijk} gradients - Information bottleneck method for neurons								
$u \text{ or } \int \rho(u) h$	i k	- up/down propagation + a _{ijk} estimation/update							
		- tensor decomposition							
		$A_{i_1i_2i_3i_4}^k \approx \sum_{j_1, j_2} a_{i_1i_2}^{j_1} b_{i_3i_4}^{j_2} c_{j_1j_2}^k$							